Spaces:
Sleeping
Sleeping
""" OpenAI pretrained model functions | |
Adapted from https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI. | |
""" | |
import os | |
import warnings | |
from typing import List, Optional, Union | |
import torch | |
from .constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD | |
from .model import build_model_from_openai_state_dict, convert_weights_to_lp, get_cast_dtype | |
from .pretrained import get_pretrained_url, list_pretrained_models_by_tag, download_pretrained_from_url | |
__all__ = ["list_openai_models", "load_openai_model"] | |
def list_openai_models() -> List[str]: | |
"""Returns the names of available CLIP models""" | |
return list_pretrained_models_by_tag('openai') | |
def load_openai_model( | |
name: str, | |
precision: Optional[str] = None, | |
device: Optional[Union[str, torch.device]] = None, | |
cache_dir: Optional[str] = None, | |
): | |
"""Load a CLIP model | |
Parameters | |
---------- | |
name : str | |
A model name listed by `clip.available_models()`, or the path to a model checkpoint containing the state_dict | |
precision: str | |
Model precision, if None defaults to 'fp32' if device == 'cpu' else 'fp16'. | |
device : Union[str, torch.device] | |
The device to put the loaded model | |
cache_dir : Optional[str] | |
The directory to cache the downloaded model weights | |
Returns | |
------- | |
model : torch.nn.Module | |
The CLIP model | |
preprocess : Callable[[PIL.Image], torch.Tensor] | |
A torchvision transform that converts a PIL image into a tensor that the returned model can take as its input | |
""" | |
if device is None: | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
if precision is None: | |
precision = 'fp32' if device == 'cpu' else 'fp16' | |
if get_pretrained_url(name, 'openai'): | |
model_path = download_pretrained_from_url(get_pretrained_url(name, 'openai'), cache_dir=cache_dir) | |
elif os.path.isfile(name): | |
model_path = name | |
else: | |
raise RuntimeError(f"Model {name} not found; available models = {list_openai_models()}") | |
try: | |
# loading JIT archive | |
model = torch.jit.load(model_path, map_location="cpu").eval() | |
state_dict = None | |
except RuntimeError: | |
# loading saved state dict | |
state_dict = torch.load(model_path, map_location="cpu") | |
# Build a non-jit model from the OpenAI jitted model state dict | |
cast_dtype = get_cast_dtype(precision) | |
try: | |
model = build_model_from_openai_state_dict(state_dict or model.state_dict(), cast_dtype=cast_dtype) | |
except KeyError: | |
sd = {k[7:]: v for k, v in state_dict["state_dict"].items()} | |
model = build_model_from_openai_state_dict(sd, cast_dtype=cast_dtype) | |
# model from OpenAI state dict is in manually cast fp16 mode, must be converted for AMP/fp32/bf16 use | |
model = model.to(device) | |
# FIXME support pure fp16/bf16 precision modes | |
if precision != 'fp16': | |
model.float() | |
if precision == 'bf16': | |
# for bf16, convert back to low-precision | |
convert_weights_to_lp(model, dtype=torch.bfloat16) | |
# add mean / std attributes for consistency with OpenCLIP models | |
model.visual.image_mean = OPENAI_DATASET_MEAN | |
model.visual.image_std = OPENAI_DATASET_STD | |
return model | |