OMG_Seg / ext /davis2017 /evaluation.py
Haobo Yuan
add omg code
b34d1d6
raw
history blame
6.16 kB
import sys
from tqdm import tqdm
import warnings
warnings.filterwarnings("ignore", category=RuntimeWarning)
import numpy as np
from ext.davis2017.davis import DAVIS
from ext.davis2017.metrics import db_eval_boundary, db_eval_iou
from ext.davis2017 import utils
from ext.davis2017.results import Results
from scipy.optimize import linear_sum_assignment
class DAVISEvaluation(object):
def __init__(self, davis_root, task, gt_set, sequences='all', codalab=False):
"""
Class to evaluate DAVIS sequences from a certain set and for a certain task
:param davis_root: Path to the DAVIS folder that contains JPEGImages, Annotations, etc. folders.
:param task: Task to compute the evaluation, chose between semi-supervised or unsupervised.
:param gt_set: Set to compute the evaluation
:param sequences: Sequences to consider for the evaluation, 'all' to use all the sequences in a set.
"""
self.davis_root = davis_root
self.task = task
self.dataset = DAVIS(root=davis_root, task=task, subset=gt_set, sequences=sequences, codalab=codalab)
@staticmethod
def _evaluate_semisupervised(all_gt_masks, all_res_masks, all_void_masks, metric):
if all_res_masks.shape[0] > all_gt_masks.shape[0]:
sys.stdout.write("\nIn your PNG files there is an index higher than the number of objects in the sequence!")
sys.exit()
elif all_res_masks.shape[0] < all_gt_masks.shape[0]:
zero_padding = np.zeros((all_gt_masks.shape[0] - all_res_masks.shape[0], *all_res_masks.shape[1:]))
all_res_masks = np.concatenate([all_res_masks, zero_padding], axis=0)
j_metrics_res, f_metrics_res = np.zeros(all_gt_masks.shape[:2]), np.zeros(all_gt_masks.shape[:2])
for ii in range(all_gt_masks.shape[0]):
if 'J' in metric:
j_metrics_res[ii, :] = db_eval_iou(all_gt_masks[ii, ...], all_res_masks[ii, ...], all_void_masks)
if 'F' in metric:
f_metrics_res[ii, :] = db_eval_boundary(all_gt_masks[ii, ...], all_res_masks[ii, ...], all_void_masks)
return j_metrics_res, f_metrics_res
@staticmethod
def _evaluate_unsupervised(all_gt_masks, all_res_masks, all_void_masks, metric, max_n_proposals=20):
if all_res_masks.shape[0] > max_n_proposals:
sys.stdout.write(f"\nIn your PNG files there is an index higher than the maximum number ({max_n_proposals}) of proposals allowed!")
sys.exit()
elif all_res_masks.shape[0] < all_gt_masks.shape[0]:
zero_padding = np.zeros((all_gt_masks.shape[0] - all_res_masks.shape[0], *all_res_masks.shape[1:]))
all_res_masks = np.concatenate([all_res_masks, zero_padding], axis=0)
j_metrics_res = np.zeros((all_res_masks.shape[0], all_gt_masks.shape[0], all_gt_masks.shape[1]))
f_metrics_res = np.zeros((all_res_masks.shape[0], all_gt_masks.shape[0], all_gt_masks.shape[1]))
for ii in range(all_gt_masks.shape[0]):
for jj in range(all_res_masks.shape[0]):
if 'J' in metric:
j_metrics_res[jj, ii, :] = db_eval_iou(all_gt_masks[ii, ...], all_res_masks[jj, ...], all_void_masks)
if 'F' in metric:
f_metrics_res[jj, ii, :] = db_eval_boundary(all_gt_masks[ii, ...], all_res_masks[jj, ...], all_void_masks)
if 'J' in metric and 'F' in metric:
all_metrics = (np.mean(j_metrics_res, axis=2) + np.mean(f_metrics_res, axis=2)) / 2
else:
all_metrics = np.mean(j_metrics_res, axis=2) if 'J' in metric else np.mean(f_metrics_res, axis=2)
row_ind, col_ind = linear_sum_assignment(-all_metrics)
return j_metrics_res[row_ind, col_ind, :], f_metrics_res[row_ind, col_ind, :]
def evaluate(self, res_path, metric=('J', 'F'), debug=False):
metric = metric if isinstance(metric, tuple) or isinstance(metric, list) else [metric]
if 'T' in metric:
raise ValueError('Temporal metric not supported!')
if 'J' not in metric and 'F' not in metric:
raise ValueError('Metric possible values are J for IoU or F for Boundary')
# Containers
metrics_res = {}
if 'J' in metric:
metrics_res['J'] = {"M": [], "R": [], "D": [], "M_per_object": {}}
if 'F' in metric:
metrics_res['F'] = {"M": [], "R": [], "D": [], "M_per_object": {}}
# Sweep all sequences
results = Results(root_dir=res_path)
for seq in tqdm(list(self.dataset.get_sequences())):
all_gt_masks, all_void_masks, all_masks_id = self.dataset.get_all_masks(seq, True)
if self.task == 'semi-supervised':
all_gt_masks, all_masks_id = all_gt_masks[:, 1:-1, :, :], all_masks_id[1:-1]
all_res_masks = results.read_masks(seq, all_masks_id)
if self.task == 'unsupervised':
j_metrics_res, f_metrics_res = self._evaluate_unsupervised(all_gt_masks, all_res_masks, all_void_masks, metric)
elif self.task == 'semi-supervised':
j_metrics_res, f_metrics_res = self._evaluate_semisupervised(all_gt_masks, all_res_masks, None, metric)
for ii in range(all_gt_masks.shape[0]):
seq_name = f'{seq}_{ii+1}'
if 'J' in metric:
[JM, JR, JD] = utils.db_statistics(j_metrics_res[ii])
metrics_res['J']["M"].append(JM)
metrics_res['J']["R"].append(JR)
metrics_res['J']["D"].append(JD)
metrics_res['J']["M_per_object"][seq_name] = JM
if 'F' in metric:
[FM, FR, FD] = utils.db_statistics(f_metrics_res[ii])
metrics_res['F']["M"].append(FM)
metrics_res['F']["R"].append(FR)
metrics_res['F']["D"].append(FD)
metrics_res['F']["M_per_object"][seq_name] = FM
# Show progress
if debug:
sys.stdout.write(seq + '\n')
sys.stdout.flush()
return metrics_res