import torch
import gradio as gr
from huggingface_hub import hf_hub_download
from PIL import Image
yolov7_weights = hf_hub_download(repo_id="LailaMB/visual_pollution_detection", filename="best_640_rpoch56.pt")
model = torch.hub.load('WongKinYiu/yolov7:main', 'custom', yolov7_weights, force_reload=True) # local repo
def object_detection(im, size=640):
results = model(im) # inference
#results.print() # print results to screen
#results.show() # display results
#results.save() # save as results1.jpg, results2.jpg... etc.
results.render() # updates results.imgs with boxes and labels
return Image.fromarray(results.imgs[0])
image = gr.inputs.Image(shape=(640, 640), image_mode="RGB", source="upload", label="Imagem", optional=False)
outputs = gr.outputs.Image(type="pil", label="Output Image")
gr.Interface(
fn=object_detection,
inputs=image,
outputs=outputs,
title="Visual Pollution Detection",
description="Demo for Visual Pollution Detection Model. The model which was developed by AICAS_KSU team to solve the Theme1 problem of the Smartathon .",
examples=[],cache_examples=False).launch()