File size: 5,953 Bytes
f03f46e
0c212b0
 
 
 
 
 
 
 
f03f46e
0c212b0
 
 
 
 
 
 
 
 
f03f46e
0c212b0
 
f03f46e
 
 
 
0c212b0
f03f46e
0c212b0
 
 
 
 
 
 
 
 
 
f03f46e
0c212b0
 
 
 
 
f03f46e
 
 
 
 
0c212b0
 
f03f46e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c212b0
 
f03f46e
 
 
0c212b0
 
f03f46e
 
0c212b0
f03f46e
 
 
0c212b0
f03f46e
 
0c212b0
5f565c0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175

import soundfile as sf
import torch
from datetime import datetime
import random
import time
from datetime import datetime
import whisper
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, VitsModel
import torch
import numpy as np
import os
import argparse
import gradio as gr
from timeit import default_timer as timer
import torch
import numpy as np
import pandas as pd
import whisper


whisper_model = whisper.load_model("medium").to("cuda")
tts_model = VitsModel.from_pretrained("facebook/mms-tts-pol")
tts_model.to("cuda")
print("TTS Loaded!")

tokenizer_tss = AutoTokenizer.from_pretrained("facebook/mms-tts-pol")

def save_to_txt(text_to_save):
    with open('prompt.txt', 'w', encoding='utf-8') as f:
        f.write(text_to_save)
        
def read_txt():
    with open('prompt.txt') as f:
        lines = f.readlines()
    return lines 


##### Chat z LLAMA ####
##### Chat z LLAMA ####
##### Chat z LLAMA ####


def _load_model_tokenizer():
    model_id = 'tangger/Qwen-7B-Chat'
    tokenizer = AutoTokenizer.from_pretrained(model_id,  trust_remote_code=True)
    model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto",trust_remote_code=True, fp16=True).eval()  
    return model, tokenizer


model, tokenizer = _load_model_tokenizer()
def postprocess(self, y):
    if y is None:
        return []
    for i, (message, response) in enumerate(y):
        y[i] = (
            None if message is None else mdtex2html.convert(message),
            None if response is None else mdtex2html.convert(response),
        )
    return y


def _parse_text(text):
    lines = text.split("\n")
    lines = [line for line in lines if line != ""]
    count = 0
    for i, line in enumerate(lines):
        if "```" in line:
            count += 1
            items = line.split("`")
            if count % 2 == 1:
                lines[i] = f'<pre><code class="language-{items[-1]}">'
            else:
                lines[i] = f"<br></code></pre>"
        else:
            if i > 0:
                if count % 2 == 1:
                    line = line.replace("`", r"\`")
                    line = line.replace("<", "&lt;")
                    line = line.replace(">", "&gt;")
                    line = line.replace(" ", "&nbsp;")
                    line = line.replace("*", "&ast;")
                    line = line.replace("_", "&lowbar;")
                    line = line.replace("-", "&#45;")
                    line = line.replace(".", "&#46;")
                    line = line.replace("!", "&#33;")
                    line = line.replace("(", "&#40;")
                    line = line.replace(")", "&#41;")
                    line = line.replace("$", "&#36;")
                lines[i] = "<br>" + line
    text = "".join(lines)
    return text

def predict(_query, _chatbot, _task_history):
    print(f"User: {_parse_text(_query)}")
    _chatbot.append((_parse_text(_query), ""))
    full_response = ""

    for response in model.chat_stream(tokenizer, _query, history=_task_history,system = "Jesteś assystentem AI. Odpowiadaj zawsze w języku poslkim"  ):
        _chatbot[-1] = (_parse_text(_query), _parse_text(response))

        yield _chatbot
        full_response = _parse_text(response)

    print(f"History: {_task_history}")
    _task_history.append((_query, full_response))
    print(f"Qwen-7B-Chat: {_parse_text(full_response)}")

def read_text(text):
    print("___Tekst do przeczytania!")
    inputs = tokenizer_tss(text, return_tensors="pt").to("cuda")
    with torch.no_grad():
        output = tts_model(**inputs).waveform.squeeze().cpu().numpy()
    sf.write('temp_file.wav', output, tts_model.config.sampling_rate)
    return 'temp_file.wav'


def update_audio(text):
    return 'temp_file.wav'

def translate(audio):
    print("__Wysyłam nagranie do whisper!")
    transcription = whisper_model.transcribe(audio, language="pl")
    return transcription["text"]


def predict(audio, _chatbot, _task_history):
    # Użyj funkcji translate, aby przekształcić audio w tekst
    _query = translate(audio)

    print(f"____User: {_parse_text(_query)}")
    _chatbot.append((_parse_text(_query), ""))
    full_response = "" 

    for response in model.chat_stream(tokenizer,
                                      _query,
                                      history= _task_history,
                                      system = "Jesteś assystentem AI. Odpowiadaj zawsze w języku polskim. Odpowiadaj krótko."):
        _chatbot[-1] = (_parse_text(_query), _parse_text(response))
        yield _chatbot
        full_response = _parse_text(response)

    print(f"____History: {_task_history}")
    _task_history.append((_query, full_response))
    print(f"__Qwen-7B-Chat: {_parse_text(full_response)}")
    print("____full_response",full_response)
    audio_file = read_text(_parse_text(full_response))  # Generowanie audio
    return full_response

def regenerate(_chatbot, _task_history):
    if not _task_history:
        yield _chatbot
        return
    item = _task_history.pop(-1)
    _chatbot.pop(-1)
    yield from predict(item[0], _chatbot, _task_history)

with gr.Blocks() as chat_demo:
    chatbot = gr.Chatbot(label='Llama Voice Chatbot', elem_classes="control-height")
    query = gr.Textbox(lines=2, label='Input')
    task_history = gr.State([])
    audio_output = gr.Audio('temp_file.wav', label="Generated Audio (wav)", type='filepath', autoplay=False)
    
    with gr.Row():
        submit_btn = gr.Button("🚀 Wyślij tekst")

    with gr.Row():
        audio_upload = gr.Audio(source="microphone", type="filepath", show_label=False)
        submit_audio_btn = gr.Button("🎙️ Wyślij audio")

    submit_btn.click(predict, [query, chatbot, task_history], [chatbot], show_progress=True)
    submit_audio_btn.click(predict, [audio_upload, chatbot, task_history], [chatbot], show_progress=True).then(update_audio, chatbot, audio_output)

chat_demo.queue().launch()