Spaces:
Runtime error
Runtime error
File size: 10,582 Bytes
d8d0b7f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
from transformers import VitsModel, AutoTokenizer
import soundfile as sf
import torch
from datetime import datetime
import random
import time
from ctransformers import AutoModelForCausalLM
from datetime import datetime
import whisper
from transformers import VitsModel, AutoTokenizer
import torch
from transformers import MusicgenForConditionalGeneration, AutoProcessor, set_seed
import torch
import numpy as np
import os
import argparse
import gradio as gr
from timeit import default_timer as timer
import torch
import numpy as np
import pandas as pd
from huggingface_hub import hf_hub_download
from model.bart import BartCaptionModel
from utils.audio_utils import load_audio, STR_CH_FIRST
from diffusers import DiffusionPipeline
from PIL import Image
def image_grid(imgs, rows, cols):
assert len(imgs) == rows*cols
w, h = imgs[0].size
grid = Image.new('RGB', size=(cols*w, rows*h))
grid_w, grid_h = grid.size
for i, img in enumerate(imgs):
grid.paste(img, box=(i%cols*w, i//cols*h))
return grid
def save_to_txt(text_to_save):
with open('prompt.txt', 'w', encoding='utf-8') as f:
f.write(text_to_save)
def read_txt():
with open('prompt.txt') as f:
lines = f.readlines()
return lines
##### Chat z LLAMA ####
##### Chat z LLAMA ####
##### Chat z LLAMA ####
params = {
"max_new_tokens":512,
"stop":["<end>" ,"<|endoftext|>","[", "<user>"],
"temperature":0.7,
"top_p":0.8,
"stream":True,
"batch_size": 8}
whisper_model = whisper.load_model("medium").to("cuda")
print("Whisper Loaded!")
llm = AutoModelForCausalLM.from_pretrained("Aspik101/trurl-2-7b-pl-instruct_GGML", model_type="llama")
print("LLM Loaded!")
tts_model = VitsModel.from_pretrained("facebook/mms-tts-pol")
tts_model.to("cuda")
print("TTS Loaded!")
tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-pol")
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=torch.float16,
use_safetensors=True,
variant="fp16").to("cuda")
print("DiffusionPipeline Loaded!")
model_audio_gen = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small").to("cuda")
processor_audio_gen = AutoProcessor.from_pretrained("facebook/musicgen-small")
with gr.Blocks() as chat_demo:
chatbot = gr.Chatbot()
audio_input = gr.Audio(source="microphone", type="filepath", show_label=False)
submit_audio = gr.Button("Submit Audio")
clear = gr.Button("Clear")
audio_output = gr.Audio('temp_file.wav', label="Generated Audio (wav)", type='filepath', autoplay=False)
def translate(audio):
print("__WysyΕam nagranie do whisper!")
transcription = whisper_model.transcribe(audio, language="pl")
return transcription["text"]
def read_text(text):
print("Tutaj jest tekst to przeczytania!", text[-1][-1])
inputs = tokenizer(text[-1][-1], return_tensors="pt").to("cuda")
with torch.no_grad():
output = tts_model(**inputs).waveform.squeeze().cpu().numpy()
sf.write('temp_file.wav', output, tts_model.config.sampling_rate)
return 'temp_file.wav'
def user(audio_data, history):
if audio_data:
user_message = translate(audio_data)
print("USER!:")
print("", history + [[user_message, None]])
return history + [[user_message, None]]
def parse_history(hist):
history_ = ""
for q, a in hist:
history_ += f"<user>: {q } \n"
if a:
history_ += f"<assistant>: {a} \n"
return history_
def bot(history):
print(f"When: {datetime.today().strftime('%Y-%m-%d %H:%M:%S')}")
prompt = f"JesteΕ AI assystentem. Odpowiadaj krΓ³tko i po polsku. {parse_history(history)}. <assistant>:"
stream = llm(prompt, **params)
history[-1][1] = ""
answer_save = ""
for character in stream:
history[-1][1] += character
answer_save += character
time.sleep(0.005)
yield history
submit_audio.click(user, [audio_input, chatbot], [chatbot], queue=False).then(bot, chatbot, chatbot).then(read_text, chatbot, audio_output)
clear.click(lambda: None, None, chatbot, queue=False)
##### Audio Gen ####
##### Audio Gen ####
##### Audio Gen ####
sampling_rate = model_audio_gen.audio_encoder.config.sampling_rate
frame_rate = model_audio_gen.audio_encoder.config.frame_rate
text_encoder = model_audio_gen.get_text_encoder()
def generate_audio(decade, genre, instrument, guidance_scale=8, audio_length_in_s=20, seed=0):
prompt = " ".join([decade, genre, 'track with ', instrument])
save_to_txt(prompt)
inputs = processor_audio_gen(
text=[prompt, "drums"],
padding=True,
return_tensors="pt",
).to(device)
with torch.no_grad():
encoder_outputs = text_encoder(**inputs)
max_new_tokens = int(frame_rate * audio_length_in_s)
set_seed(seed)
audio_values = model_audio_gen.generate(inputs.input_ids[0][None, :], attention_mask=inputs.attention_mask, encoder_outputs=encoder_outputs, do_sample=True, guidance_scale=guidance_scale, max_new_tokens=max_new_tokens)
sf.write('generated_audio.wav', audio_values.cpu()[0][0], 32_000)
audio_values = (audio_values.cpu().numpy() * 32767).astype(np.int16)
return (sampling_rate, audio_values)
audio_gen = gr.Interface(
fn=generate_audio,
inputs=[
# gr.Text(label="Negative prompt", value="drums"),
gr.Radio(["50s", " 60s", "70s", "80s", "90s"], label="decade", info=""),
gr.Radio(["classic", "rock", "pop", "metal", "jazz", "synth"], label="genre", info=""),
gr.Radio(["acoustic guitar", "electric guitar", "drums", "saxophone", "keyboard", "accordion", "fiddle"], label="instrument", info=""),
gr.Slider(1.5, 10, value=8, step=0.5, label="Guidance scale"),
gr.Slider(5, 30, value=20, step=5, label="Audio length in s"),
# gr.Slider(0, 10, value=0, step=1, label="Seed"),
],
outputs=[
gr.Audio(label="Generated Music", type="numpy"),
]#,
# examples=EXAMPLES,
)
#### Audio desc and Stable ###
#### Audio desc and Stable ###
#### Audio desc and Stable ###
if os.path.isfile("transfer.pth") == False:
torch.hub.download_url_to_file('https://huggingface.co/seungheondoh/lp-music-caps/resolve/main/transfer.pth', 'transfer.pth')
torch.hub.download_url_to_file('https://huggingface.co/seungheondoh/lp-music-caps/resolve/main/folk.wav', 'folk.wav')
torch.hub.download_url_to_file('https://huggingface.co/seungheondoh/lp-music-caps/resolve/main/electronic.mp3', 'electronic.mp3')
torch.hub.download_url_to_file('https://huggingface.co/seungheondoh/lp-music-caps/resolve/main/orchestra.wav', 'orchestra.wav')
device = "cuda:0" if torch.cuda.is_available() else "cpu"
example_list = ['folk.wav', 'electronic.mp3', 'orchestra.wav']
model = BartCaptionModel(max_length = 128)
pretrained_object = torch.load('./transfer.pth', map_location='cpu')
state_dict = pretrained_object['state_dict']
model.load_state_dict(state_dict)
if torch.cuda.is_available():
torch.cuda.set_device(device)
model = model.cuda(device)
model.eval()
def get_audio(audio_path, duration=10, target_sr=16000):
n_samples = int(duration * target_sr)
audio, sr = load_audio(
path= audio_path,
ch_format= STR_CH_FIRST,
sample_rate= target_sr,
downmix_to_mono= True,
)
if len(audio.shape) == 2:
audio = audio.mean(0, False) # to mono
input_size = int(n_samples)
if audio.shape[-1] < input_size: # pad sequence
pad = np.zeros(input_size)
pad[: audio.shape[-1]] = audio
audio = pad
ceil = int(audio.shape[-1] // n_samples)
audio = torch.from_numpy(np.stack(np.split(audio[:ceil * n_samples], ceil)).astype('float32'))
return audio
def captioning(audio_path):
audio_tensor = get_audio(audio_path = audio_path)
if torch.cuda.is_available():
audio_tensor = audio_tensor.to(device)
with torch.no_grad():
output = model.generate(
samples=audio_tensor,
num_beams=5,
)
inference = ""
number_of_chunks = range(audio_tensor.shape[0])
for chunk, text in zip(number_of_chunks, output):
time = f"[{chunk * 10}:00-{(chunk + 1) * 10}:00]"
inference += f"{time}\n{text} \n \n"
return inference
title = ""
description = ""
article = ""
def captioning():
audio_path = 'generated_audio.wav'
audio_tensor = get_audio(audio_path=audio_path)
if torch.cuda.is_available():
audio_tensor = audio_tensor.to(device)
with torch.no_grad():
output = model.generate(
samples=audio_tensor,
num_beams=5)
inference = ""
number_of_chunks = range(audio_tensor.shape[0])
for chunk, text in zip(number_of_chunks, output):
time = f"[{chunk * 10}:00-{(chunk + 1) * 10}:00]"
inference += f"{time}\n{text} \n \n"
prompt = read_txt()
print(prompt[0])
# Generuj obraz na podstawie tekstu
#generated_images = pipe(prompt=prompt[0]*5 + inference + prompt[0]*5).images
#image = generated_images[0]
num_images = 3
prompt = [prompt[0]*5 + inference + prompt[0]*5] * num_images
images = pipe(prompt, height=768, width=768).images
grid = image_grid(images, rows=1, cols=3)
return inference, grid
audio_desc = gr.Interface(fn=captioning,
inputs=None,
outputs=[
gr.Textbox(label="Caption generated by LP-MusicCaps Transfer Model"),
gr.Image(label="Generated Image") # Dodane wyjΕcie dla obrazu
],
title=title,
description=description,
article=article,
cache_examples=False
)
music = gr.Video("muzyka_AI.mp4")
voice_cloning = gr.Video("voice_cloning_fraud.mp4")
##### Run Alll #######
##### Run Alll #######
##### Run Alll #######
demo_all = gr.TabbedInterface([music, audio_gen, audio_desc, voice_cloning, chat_demo], ["1.Music", "2.Audio Generation", "3.Image Generation", "4.Voice Cloning", "5.Chat with LLama"])
demo_all.queue()
demo_all.launch()
|