Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,14 +1,30 @@
|
|
1 |
-
|
2 |
import soundfile as sf
|
3 |
import torch
|
4 |
-
|
5 |
from datetime import datetime
|
6 |
import random
|
7 |
import time
|
|
|
|
|
|
|
|
|
|
|
8 |
import numpy as np
|
9 |
import os
|
10 |
import argparse
|
11 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
|
14 |
def save_to_txt(text_to_save):
|
@@ -21,7 +37,6 @@ def read_txt():
|
|
21 |
return lines
|
22 |
|
23 |
|
24 |
-
|
25 |
##### Chat z LLAMA ####
|
26 |
##### Chat z LLAMA ####
|
27 |
##### Chat z LLAMA ####
|
@@ -32,7 +47,7 @@ def _load_model_tokenizer():
|
|
32 |
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
|
33 |
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto",trust_remote_code=True, fp16=True).eval()
|
34 |
return model, tokenizer
|
35 |
-
|
36 |
|
37 |
|
38 |
def postprocess(self, y):
|
@@ -82,7 +97,7 @@ def predict(_query, _chatbot, _task_history):
|
|
82 |
_chatbot.append((_parse_text(_query), ""))
|
83 |
full_response = ""
|
84 |
|
85 |
-
for response in
|
86 |
_chatbot[-1] = (_parse_text(_query), _parse_text(response))
|
87 |
|
88 |
yield _chatbot
|
@@ -106,8 +121,9 @@ def update_audio(text):
|
|
106 |
|
107 |
def translate(audio):
|
108 |
print("__Wysyłam nagranie do whisper!")
|
109 |
-
transcription = whisper_model.transcribe(audio, language="pl")
|
110 |
-
return
|
|
|
111 |
|
112 |
|
113 |
def predict(audio, _chatbot, _task_history):
|
@@ -118,7 +134,7 @@ def predict(audio, _chatbot, _task_history):
|
|
118 |
_chatbot.append((_parse_text(_query), ""))
|
119 |
full_response = ""
|
120 |
|
121 |
-
for response in
|
122 |
_query,
|
123 |
history= _task_history,
|
124 |
system = "Jesteś assystentem AI. Odpowiadaj zawsze w języku polskim. Odpowiadaj krótko."):
|
@@ -132,7 +148,6 @@ def predict(audio, _chatbot, _task_history):
|
|
132 |
print("____full_response",full_response)
|
133 |
audio_file = read_text(_parse_text(full_response)) # Generowanie audio
|
134 |
return full_response
|
135 |
-
# return 'temp_file.wav' # Zwrócenie ścieżki do pliku audio
|
136 |
|
137 |
def regenerate(_chatbot, _task_history):
|
138 |
if not _task_history:
|
@@ -158,18 +173,6 @@ with gr.Blocks() as chat_demo:
|
|
158 |
submit_btn.click(predict, [query, chatbot, task_history], [chatbot], show_progress=True)
|
159 |
submit_audio_btn.click(predict, [audio_upload, chatbot, task_history], [chatbot], show_progress=True).then(update_audio, chatbot, audio_output)
|
160 |
|
|
|
161 |
|
162 |
|
163 |
-
|
164 |
-
|
165 |
-
##### Audio Gen ####
|
166 |
-
##### Audio Gen ####
|
167 |
-
##### Audio Gen ####
|
168 |
-
|
169 |
-
|
170 |
-
##### Run Alll #######
|
171 |
-
##### Run Alll #######
|
172 |
-
##### Run Alll #######
|
173 |
-
|
174 |
-
chat_demo.queue()
|
175 |
-
chat_demo.launch()
|
|
|
1 |
+
|
2 |
import soundfile as sf
|
3 |
import torch
|
|
|
4 |
from datetime import datetime
|
5 |
import random
|
6 |
import time
|
7 |
+
from datetime import datetime
|
8 |
+
import whisper
|
9 |
+
import torch
|
10 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, VitsModel
|
11 |
+
import torch
|
12 |
import numpy as np
|
13 |
import os
|
14 |
import argparse
|
15 |
import gradio as gr
|
16 |
+
from timeit import default_timer as timer
|
17 |
+
import torch
|
18 |
+
import numpy as np
|
19 |
+
import pandas as pd
|
20 |
+
import whisper
|
21 |
+
|
22 |
+
|
23 |
+
# whisper_model = whisper.load_model("medium").to("cuda")
|
24 |
+
tts_model = VitsModel.from_pretrained("facebook/mms-tts-pol")
|
25 |
+
tts_model.to("cuda")
|
26 |
+
print("TTS Loaded!")
|
27 |
+
tokenizer_tss = AutoTokenizer.from_pretrained("facebook/mms-tts-pol")
|
28 |
|
29 |
|
30 |
def save_to_txt(text_to_save):
|
|
|
37 |
return lines
|
38 |
|
39 |
|
|
|
40 |
##### Chat z LLAMA ####
|
41 |
##### Chat z LLAMA ####
|
42 |
##### Chat z LLAMA ####
|
|
|
47 |
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
|
48 |
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto",trust_remote_code=True, fp16=True).eval()
|
49 |
return model, tokenizer
|
50 |
+
|
51 |
|
52 |
|
53 |
def postprocess(self, y):
|
|
|
97 |
_chatbot.append((_parse_text(_query), ""))
|
98 |
full_response = ""
|
99 |
|
100 |
+
for response in model.chat_stream(tokenizer, _query, history=_task_history,system = "Jesteś assystentem AI. Odpowiadaj zawsze w języku poslkim" ):
|
101 |
_chatbot[-1] = (_parse_text(_query), _parse_text(response))
|
102 |
|
103 |
yield _chatbot
|
|
|
121 |
|
122 |
def translate(audio):
|
123 |
print("__Wysyłam nagranie do whisper!")
|
124 |
+
# transcription = whisper_model.transcribe(audio, language="pl")
|
125 |
+
return "Co możesz powiedzieć o ING Banku Śląskim?"
|
126 |
+
# return transcription["text"]
|
127 |
|
128 |
|
129 |
def predict(audio, _chatbot, _task_history):
|
|
|
134 |
_chatbot.append((_parse_text(_query), ""))
|
135 |
full_response = ""
|
136 |
|
137 |
+
for response in model.chat_stream(tokenizer,
|
138 |
_query,
|
139 |
history= _task_history,
|
140 |
system = "Jesteś assystentem AI. Odpowiadaj zawsze w języku polskim. Odpowiadaj krótko."):
|
|
|
148 |
print("____full_response",full_response)
|
149 |
audio_file = read_text(_parse_text(full_response)) # Generowanie audio
|
150 |
return full_response
|
|
|
151 |
|
152 |
def regenerate(_chatbot, _task_history):
|
153 |
if not _task_history:
|
|
|
173 |
submit_btn.click(predict, [query, chatbot, task_history], [chatbot], show_progress=True)
|
174 |
submit_audio_btn.click(predict, [audio_upload, chatbot, task_history], [chatbot], show_progress=True).then(update_audio, chatbot, audio_output)
|
175 |
|
176 |
+
chat_demo.queue().launch(share=True)
|
177 |
|
178 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|