Spaces:
Runtime error
Runtime error
stability fix
Browse files
app.py
CHANGED
@@ -5,30 +5,61 @@ import gradio as gr
|
|
5 |
|
6 |
df = pd.read_csv("./data.csv")
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
def md_builder(model, dataset, displayed_metrics):
|
14 |
row = df[df["friendly_name"] == model]
|
15 |
str = ""
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
if "Performance" in displayed_metrics:
|
22 |
perform_val = f"\nPerformance: `{row['performance'].values[0]}`"
|
23 |
|
24 |
if "Accuracy" in displayed_metrics:
|
25 |
-
accuracy_val= f"\nAccuracy: `{row['accuracy'].values[0]}`"
|
26 |
|
27 |
if "Precision" in displayed_metrics:
|
28 |
-
precision_val= f"\nPrecision: `{row['precision_weighted'].values[0]}`"
|
29 |
|
30 |
if "Recall" in displayed_metrics:
|
31 |
-
recall_val= f"\nRecall: `{row['recall_weighted'].values[0]}`"
|
32 |
|
33 |
if "Robustness" in displayed_metrics:
|
34 |
robustness_val = f"\nRobustness: `{100-row['robustness'].values[0]}`"
|
@@ -37,11 +68,20 @@ def md_builder(model, dataset, displayed_metrics):
|
|
37 |
fairness_val = f"\nFairness: `{0}`"
|
38 |
|
39 |
if "Failure Clusters" in displayed_metrics:
|
40 |
-
cl_count = row[
|
41 |
fail_cluster = f"\nTop failures: {row['top_failure_cluster'].values[0]}(+{cl_count - 1} others)(details for all {cl_count} clusters)"
|
42 |
|
43 |
str += "\n<div style='text-align: right'>⛶ Expand safety card</div>"
|
44 |
-
str = parse_into_jinja_markdown(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
return str
|
46 |
|
47 |
|
|
|
5 |
|
6 |
df = pd.read_csv("./data.csv")
|
7 |
|
8 |
+
|
9 |
+
def parse_into_jinja_markdown(
|
10 |
+
model_name,
|
11 |
+
performance,
|
12 |
+
accuracy,
|
13 |
+
Precision,
|
14 |
+
Recall,
|
15 |
+
Robustness,
|
16 |
+
Fairness,
|
17 |
+
Failure_Clusters,
|
18 |
+
):
|
19 |
+
env = Environment(loader=FileSystemLoader("."), autoescape=True)
|
20 |
+
temp = env.get_template("mc_template.md")
|
21 |
+
return temp.render(
|
22 |
+
model_id=model_name,
|
23 |
+
accuracy=accuracy,
|
24 |
+
Precision=Precision,
|
25 |
+
Recall=Recall,
|
26 |
+
Robustness=Robustness,
|
27 |
+
Fairness=Fairness,
|
28 |
+
Performance=performance,
|
29 |
+
Failure_Cluster=Failure_Clusters,
|
30 |
+
)
|
31 |
+
|
32 |
|
33 |
def md_builder(model, dataset, displayed_metrics):
|
34 |
row = df[df["friendly_name"] == model]
|
35 |
str = ""
|
36 |
+
## f"# <span style='font-size: 16px;'> Model Card for <code style='font-weight: 400'>{model}</code></span>\n"
|
37 |
+
##f"On dataset `{dataset}`\n"
|
38 |
+
|
39 |
+
## )
|
40 |
+
|
41 |
+
# init vars to empty string
|
42 |
+
(
|
43 |
+
perform_val,
|
44 |
+
accuracy_val,
|
45 |
+
precision_val,
|
46 |
+
recall_val,
|
47 |
+
robustness_val,
|
48 |
+
fairness_val,
|
49 |
+
fail_cluster,
|
50 |
+
) = ("", "", "", "", "", "", "")
|
51 |
|
52 |
if "Performance" in displayed_metrics:
|
53 |
perform_val = f"\nPerformance: `{row['performance'].values[0]}`"
|
54 |
|
55 |
if "Accuracy" in displayed_metrics:
|
56 |
+
accuracy_val = f"\nAccuracy: `{row['accuracy'].values[0]}`"
|
57 |
|
58 |
if "Precision" in displayed_metrics:
|
59 |
+
precision_val = f"\nPrecision: `{row['precision_weighted'].values[0]}`"
|
60 |
|
61 |
if "Recall" in displayed_metrics:
|
62 |
+
recall_val = f"\nRecall: `{row['recall_weighted'].values[0]}`"
|
63 |
|
64 |
if "Robustness" in displayed_metrics:
|
65 |
robustness_val = f"\nRobustness: `{100-row['robustness'].values[0]}`"
|
|
|
68 |
fairness_val = f"\nFairness: `{0}`"
|
69 |
|
70 |
if "Failure Clusters" in displayed_metrics:
|
71 |
+
cl_count = row["cluster_count"].values[0]
|
72 |
fail_cluster = f"\nTop failures: {row['top_failure_cluster'].values[0]}(+{cl_count - 1} others)(details for all {cl_count} clusters)"
|
73 |
|
74 |
str += "\n<div style='text-align: right'>⛶ Expand safety card</div>"
|
75 |
+
str = parse_into_jinja_markdown(
|
76 |
+
model,
|
77 |
+
perform_val,
|
78 |
+
accuracy_val,
|
79 |
+
precision_val,
|
80 |
+
recall_val,
|
81 |
+
robustness_val,
|
82 |
+
fairness_val,
|
83 |
+
fail_cluster,
|
84 |
+
)
|
85 |
return str
|
86 |
|
87 |
|