Spaces:
Runtime error
Runtime error
import torch | |
from torch.utils.data import DataLoader, Subset | |
import sys | |
sys.path.append(".") | |
from opensora.models.ae.videobase import CausalVAEModel, CausalVAEDataset | |
num_workers = 4 | |
batch_size = 12 | |
torch.manual_seed(0) | |
torch.set_grad_enabled(False) | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
pretrained_model_name_or_path = 'results/causalvae/checkpoint-26000' | |
data_path = '/remote-home1/dataset/UCF-101' | |
video_num_frames = 17 | |
resolution = 128 | |
sample_rate = 10 | |
vae = CausalVAEModel.load_from_checkpoint(pretrained_model_name_or_path) | |
vae.to(device) | |
dataset = CausalVAEDataset(data_path, sequence_length=video_num_frames, resolution=resolution, sample_rate=sample_rate) | |
subset_indices = list(range(1000)) | |
subset_dataset = Subset(dataset, subset_indices) | |
loader = DataLoader(subset_dataset, batch_size=8, pin_memory=True) | |
all_latents = [] | |
for video_data in loader: | |
video_data = video_data['video'].to(device) | |
latents = vae.encode(video_data).sample() | |
all_latents.append(video_data.cpu()) | |
all_latents_tensor = torch.cat(all_latents) | |
std = all_latents_tensor.std().item() | |
normalizer = 1 / std | |
print(f'{normalizer = }') |