Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,22 +1,29 @@
|
|
1 |
import streamlit as st
|
2 |
-
from transformers import
|
3 |
-
import torch
|
4 |
|
5 |
-
#
|
6 |
-
|
|
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
# Streamlit
|
10 |
-
st.title("News
|
11 |
-
st.write("Enter
|
12 |
|
13 |
-
|
14 |
-
|
15 |
|
16 |
-
|
17 |
-
if
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
|
1 |
import streamlit as st
|
2 |
+
from transformers import AutoTokenizer, AutoModelWithLMHead
|
|
|
3 |
|
4 |
+
# 加载模型和分词器
|
5 |
+
tokenizer = AutoTokenizer.from_pretrained("mrm8488/t5-base-finetuned-summarize-news")
|
6 |
+
model = AutoModelWithLMHead.from_pretrained("mrm8488/t5-base-finetuned-summarize-news")
|
7 |
|
8 |
+
# 定义摘要函数
|
9 |
+
def summarize(text, max_length=150):
|
10 |
+
input_ids = tokenizer.encode(text, return_tensors="pt", add_special_tokens=True)
|
11 |
+
generated_ids = model.generate(input_ids=input_ids, num_beams=2, max_length=max_length, repetition_penalty=2.5, length_penalty=1.0, early_stopping=True)
|
12 |
+
preds = [tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=True) for g in generated_ids]
|
13 |
+
return preds[0]
|
14 |
|
15 |
+
# Streamlit 应用程序界面
|
16 |
+
st.title("News Summarization App")
|
17 |
+
st.write("Enter the news article text below to generate a summary.")
|
18 |
|
19 |
+
article = st.text_area("News Article", height=300)
|
20 |
+
max_len = st.slider("Max Length of Summary", min_value=50, max_value=300, value=150)
|
21 |
|
22 |
+
if st.button("Summarize"):
|
23 |
+
if article:
|
24 |
+
with st.spinner("Generating summary..."):
|
25 |
+
summary = summarize(article, max_length=max_len)
|
26 |
+
st.write("**Summary:**")
|
27 |
+
st.write(summary)
|
28 |
+
else:
|
29 |
+
st.error("Please enter some text to summarize.")
|