Spaces:
Runtime error
Runtime error
File size: 3,372 Bytes
bdbfec0 c6aa119 fadc8f0 f7f5fe1 bdbfec0 895d632 fadc8f0 c6aa119 881a55d c6aa119 881a55d 4b29661 fadc8f0 c6aa119 fadc8f0 881a55d fadc8f0 c6aa119 895d632 4b29661 f7f5fe1 0fff078 f7f5fe1 bcc1e2c f7f5fe1 fadc8f0 bcc1e2c fadc8f0 bcc1e2c f7f5fe1 1937039 bcc1e2c 0fff078 f7f5fe1 fadc8f0 895d632 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
import streamlit as st
import pandas as pd
import requests
import folium
from streamlit_folium import folium_static
from transformers import pipeline
# Fonction pour récupérer les données de l'API
def get_data():
url = "https://opendata.bordeaux-metropole.fr/api/records/1.0/search/?dataset=met_etablissement_rse&q=&rows=100"
response = requests.get(url)
if response.status_code == 200:
data = response.json()
records = data.get("records", [])
return [record["fields"] for record in records], data.get("nhits", 0)
else:
return [], 0
# Fonction pour l'onglet "Organisations engagées"
def display_organisations_engagees():
st.markdown("## OPEN DATA RSE")
st.markdown("### Découvrez les organisations engagées RSE de la métropole de Bordeaux")
data, _ = get_data()
if data:
df = pd.DataFrame(data)
df = df.rename(columns={
"nom_courant_denomination": "Nom",
"commune": "Commune",
"libelle_section_naf": "Section NAF",
"tranche_effectif_entreprise": "Effectif",
"action_rse": "Action RSE"
})
df = df[["Nom", "Commune", "Section NAF", "Effectif", "Action RSE"]]
st.dataframe(df, width=None, height=None)
# Fonction pour l'onglet "GeoRSE Insights"
def display_geo_rse_insights():
# La même fonction que celle définie précédemment pour afficher la carte
# Classification des actions RSE basée sur les descriptions
def classify_rse_actions(descriptions):
classifier = pipeline("zero-shot-classification", model="typeform/distilbert-base-uncased-mnli")
categories = [
"La gouvernance de la structure",
"Les droits humains",
"Les conditions et relations de travail",
"La responsabilité environnementale",
"La loyauté des pratiques",
"Les questions relatives au consommateur et à la protection du consommateur",
"Les communautés et le développement local"
]
classified_data = []
for description in descriptions:
result = classifier(description, categories)
top_category = result['labels'][0]
classified_data.append(top_category)
return classified_data
# Nouvelle fonction pour l'onglet de classification RSE
def display_rse_categorizer():
st.header("Classification des Actions RSE")
st.write("Classification automatique des actions RSE des entreprises.")
data, _ = get_data()
if data:
descriptions = [item['action_rse'] for item in data if 'action_rse' in item]
categories = classify_rse_actions(descriptions)
# Affichage des résultats
for i, category in enumerate(categories):
st.write(f"Action RSE: {descriptions[i]}")
st.write(f"Catégorie prédite: {category}")
st.write("---")
# Main function orchestrating the app UI
def main():
st.sidebar.title("Navigation")
app_mode = st.sidebar.radio("Choisissez l'onglet", ["Organisations engagées", "GeoRSE Insights", "Classification RSE"])
if app_mode == "Organisations engagées":
display_organisations_engagees()
elif app_mode == "GeoRSE Insights":
display_geo_rse_insights()
elif app_mode == "Classification RSE":
display_rse_categorizer()
if __name__ == "__main__":
main()
|