File size: 2,466 Bytes
b807d87
bdbfec0
c6aa119
 
fadc8f0
 
1883e68
fadc8f0
 
c6aa119
 
 
 
f88e06d
 
 
 
 
 
 
 
 
 
 
 
 
c6aa119
881a55d
4b29661
f88e06d
 
 
 
 
 
 
 
 
 
 
 
 
c6aa119
fadc8f0
 
881a55d
fadc8f0
c6aa119
 
895d632
 
 
 
 
 
 
 
 
4b29661
fadc8f0
b807d87
6983fe3
 
 
bcc1e2c
6983fe3
 
 
fadc8f0
 
895d632
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

import streamlit as st
import pandas as pd
import requests
import folium
from streamlit_folium import folium_static

def get_data():
    url = "https://opendata.bordeaux-metropole.fr/api/records/1.0/search/?dataset=met_etablissement_rse&q=&rows=100"
    response = requests.get(url)
    if response.status_code == 200:
        data = response.json()
        records = data.get("records", [])
        # Ensure that 'point_geo' is extracted correctly as a dictionary with 'lat' and 'lon'
        cleaned_data = []
        for record in records:
            item = record["fields"]
            point_geo = item.get("point_geo", {})
            if isinstance(point_geo, dict):
                lat = point_geo.get("lat")
                lon = point_geo.get("lon")
                if lat and lon:
                    item['latitude'] = lat
                    item['longitude'] = lon
                    cleaned_data.append(item)
        return cleaned_data, data.get("nhits", 0)
    else:
        return [], 0

def display_map(data):
    m = folium.Map(location=[44.837789, -0.57918], zoom_start=12)
    for item in data:
        lat = item.get('latitude')
        lon = item.get('longitude')
        if lat and lon:
            folium.Marker(
                [lat, lon],
                icon=folium.Icon(color="green", icon="leaf"),
                popup=item.get('Nom', 'Sans nom'),
            ).add_to(m)
    folium_static(m)

def display_organisations_engagees():
    st.markdown("## OPEN DATA RSE")
    st.markdown("### Découvrez les organisations engagées RSE de la métropole de Bordeaux")
    
    data, _ = get_data()
    if data:
        df = pd.DataFrame(data)
        df = df.rename(columns={
            "nom_courant_denomination": "Nom",
            "commune": "Commune",
            "libelle_section_naf": "Section NAF",
            "tranche_effectif_entreprise": "Effectif",
            "action_rse": "Action RSE"
        })
        df = df[["Nom", "Commune", "Section NAF", "Effectif", "Action RSE"]]
        st.dataframe(df, width=None, height=None)

def main():
    st.sidebar.title("Navigation")
    app_mode = st.sidebar.radio("Choisissez l'onglet", ["Organisations engagées", "Localisation des Entreprises"])

    if app_mode == "Organisations engagées":
        display_organisations_engagees()
    elif app_mode == "Localisation des Entreprises":
        data, _ = get_data()
        display_map(data)

if __name__ == "__main__":
    main()