Spaces:
Runtime error
Runtime error
import streamlit as st | |
import pandas as pd | |
import requests | |
import folium | |
from streamlit_folium import folium_static | |
from transformers import pipeline | |
import tensorflow as tf | |
print("TensorFlow version:", tf.__version__) | |
# Fonction pour récupérer les données de l'API | |
def get_data(): | |
url = "https://opendata.bordeaux-metropole.fr/api/records/1.0/search/?dataset=met_etablissement_rse&q=&rows=100" | |
response = requests.get(url) | |
if response.status_code == 200: | |
data = response.json() | |
records = data.get("records", []) | |
return [record["fields"] for record in records], data.get("nhits", 0) | |
else: | |
return [], 0 | |
# Fonction pour l'onglet "Organisations engagées" | |
def display_organisations_engagees(): | |
st.markdown("## OPEN DATA RSE") | |
st.markdown("### Découvrez les organisations engagées RSE de la métropole de Bordeaux") | |
data, _ = get_data() | |
if data: | |
df = pd.DataFrame(data) | |
df = df.rename(columns={ | |
"nom_courant_denomination": "Nom", | |
"commune": "Commune", | |
"libelle_section_naf": "Section NAF", | |
"tranche_effectif_entreprise": "Effectif", | |
"action_rse": "Action RSE" | |
}) | |
df = df[["Nom", "Commune", "Section NAF", "Effectif", "Action RSE"]] | |
st.dataframe(df, width=None, height=None) | |
# Fonction pour l'onglet "GeoRSE Insights" | |
def display_geo_rse_insights(): | |
data, _ = get_data() | |
if data: | |
m = folium.Map(location=[44.84474, -0.60711], zoom_start=11) | |
for item in data: | |
point_geo = item.get('point_geo', []) | |
if point_geo: | |
lat, lon = point_geo | |
lat, lon = float(lat), float(lon) | |
if lat and lon: | |
folium.Marker( | |
[lat, lon], | |
popup=f"<b>{item.get('nom_courant_denomination', 'Sans nom')}</b><br>Action RSE: {item.get('action_rse', 'Non spécifié')}", | |
icon=folium.Icon(color="green", icon="leaf"), | |
).add_to(m) | |
folium_static(m) | |
# Fonction pour la classification des actions RSE | |
def classify_rse_actions(descriptions): | |
classifier = pipeline("zero-shot-classification", model="typeform/distilbert-base-uncased-mnli") | |
categories = [ | |
"La gouvernance de la structure", | |
"Les droits humains", | |
"Les conditions et relations de travail", | |
"La responsabilité environnementale", | |
"La loyauté des pratiques", | |
"Les questions relatives au consommateur et à la protection du consommateur", | |
"Les communautés et le développement local" | |
] | |
classified_data = [] | |
for description in descriptions: | |
result = classifier(description, categories) | |
top_category = result['labels'][0] | |
classified_data.append(top_category) | |
return classified_data | |
# Nouvelle fonction pour l'onglet de classification RSE | |
def display_rse_categorizer(): | |
st.header("Classification des Actions RSE") | |
st.write("Cet outil classe les actions RSE des entreprises selon les normes ISO 26000.") | |
data, _ = get_data() | |
if data: | |
descriptions = [item['action_rse'] for item in data if 'action_rse' in item] | |
categories = classify_rse_actions(descriptions) | |
for i, category in enumerate(categories): | |
st.write(f"Action RSE: {descriptions[i]}") | |
st.write(f"Catégorie prédite: {category}") | |
st.write("---") | |
# Main function orchestrating the app UI | |
def main(): | |
st.sidebar.title("Navigation") | |
app_mode = st.sidebar.radio("Choisissez l'onglet", ["Organisations engagées", "GeoRSE Insights", "Classification RSE"]) | |
if app_mode == "Organisations engagées": | |
display_organisations_engagees() | |
elif app_mode == "GeoRSE Insights": | |
display_geo_rse_insights() | |
elif app_mode == "Classification RSE": | |
display_rse_categorizer() | |
if __name__ == "__main__": | |
main() | |