Spaces:
Running
on
T4
Running
on
T4
import torch | |
import torch.nn as nn | |
from einops.layers.torch import Rearrange | |
def get_padding(kernel_size, dilation=1): | |
return int((kernel_size*dilation - dilation)/2) | |
class FeedForwardModule(nn.Module): | |
def __init__(self, dim, mult=4, dropout=0): | |
super(FeedForwardModule, self).__init__() | |
self.ffm = nn.Sequential( | |
nn.LayerNorm(dim), | |
nn.Linear(dim, dim * mult), | |
nn.SiLU(), | |
nn.Dropout(dropout), | |
nn.Linear(dim * mult, dim), | |
nn.Dropout(dropout) | |
) | |
def forward(self, x): | |
return self.ffm(x) | |
class ConformerConvModule(nn.Module): | |
def __init__(self, dim, expansion_factor=2, kernel_size=31, dropout=0.): | |
super(ConformerConvModule, self).__init__() | |
inner_dim = dim * expansion_factor | |
self.ccm = nn.Sequential( | |
nn.LayerNorm(dim), | |
Rearrange('b n c -> b c n'), | |
nn.Conv1d(dim, inner_dim*2, 1), | |
nn.GLU(dim=1), | |
nn.Conv1d(inner_dim, inner_dim, kernel_size=kernel_size, | |
padding=get_padding(kernel_size), groups=inner_dim), # DepthWiseConv1d | |
nn.BatchNorm1d(inner_dim), | |
nn.SiLU(), | |
nn.Conv1d(inner_dim, dim, 1), | |
Rearrange('b c n -> b n c'), | |
nn.Dropout(dropout) | |
) | |
def forward(self, x): | |
return self.ccm(x) | |
class AttentionModule(nn.Module): | |
def __init__(self, dim, n_head=8, dropout=0.): | |
super(AttentionModule, self).__init__() | |
self.attn = nn.MultiheadAttention(dim, n_head, dropout=dropout) | |
self.layernorm = nn.LayerNorm(dim) | |
def forward(self, x, attn_mask=None, key_padding_mask=None): | |
x = self.layernorm(x) | |
x, _ = self.attn(x, x, x, | |
attn_mask=attn_mask, | |
key_padding_mask=key_padding_mask) | |
return x | |
class ConformerBlock(nn.Module): | |
def __init__(self, dim, n_head=8, ffm_mult=4, ccm_expansion_factor=2, ccm_kernel_size=31, | |
ffm_dropout=0., attn_dropout=0., ccm_dropout=0.): | |
super(ConformerBlock, self).__init__() | |
self.ffm1 = FeedForwardModule(dim, ffm_mult, dropout=ffm_dropout) | |
self.attn = AttentionModule(dim, n_head, dropout=attn_dropout) | |
self.ccm = ConformerConvModule(dim, ccm_expansion_factor, ccm_kernel_size, dropout=ccm_dropout) | |
self.ffm2 = FeedForwardModule(dim, ffm_mult, dropout=ffm_dropout) | |
self.post_norm = nn.LayerNorm(dim) | |
def forward(self, x): | |
x = x + 0.5 * self.ffm1(x) | |
x = x + self.attn(x) | |
x = x + self.ccm(x) | |
x = x + 0.5 * self.ffm2(x) | |
x = self.post_norm(x) | |
return x | |
def main(): | |
x = torch.ones(10, 100, 64) | |
conformer = ConformerBlock(dim=64) | |
print(conformer(x)) | |
if __name__ == '__main__': | |
main() |