Spaces:
Sleeping
Sleeping
File size: 8,607 Bytes
779acf3 59135a5 72b0fe6 59135a5 779acf3 72b0fe6 779acf3 7aa55b4 1869bcd 779acf3 11cddad e955768 59135a5 e955768 11cddad 779acf3 1869bcd 72b0fe6 1869bcd 7aa55b4 1869bcd 72b0fe6 1869bcd 72b0fe6 1869bcd 72b0fe6 1869bcd 72b0fe6 1869bcd 72b0fe6 1869bcd 779acf3 1869bcd e3c9822 779acf3 11cddad 779acf3 11cddad 779acf3 11cddad 779acf3 11cddad 779acf3 11cddad 779acf3 11cddad 779acf3 11cddad 72b0fe6 11cddad 72b0fe6 11cddad 72b0fe6 11cddad 72b0fe6 11cddad 779acf3 11cddad 779acf3 38a02d4 11cddad 38a02d4 11cddad 38a02d4 779acf3 11cddad 779acf3 11cddad 779acf3 11cddad 779acf3 11cddad 779acf3 11cddad 779acf3 11cddad 779acf3 11cddad 779acf3 11cddad 779acf3 11cddad 779acf3 11cddad 779acf3 11cddad 779acf3 e3c9822 1869bcd 93fd2ea e3c9822 1869bcd e3c9822 779acf3 eaf1941 72b0fe6 1869bcd 93fd2ea e3c9822 11cddad e3c9822 1869bcd eaf1941 e3c9822 11cddad e3c9822 779acf3 11cddad 98d1c03 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
#!/usr/bin/env python
from __future__ import annotations
import os
import random
import gradio as gr
import numpy as np
import PIL.Image
import spaces
import torch
from diffusers import StableDiffusionAttendAndExcitePipeline, StableDiffusionPipeline
DESCRIPTION = """\
# Attend-and-Excite
This is a demo for [Attend-and-Excite](https://arxiv.org/abs/2301.13826).
Attend-and-Excite performs attention-based generative semantic guidance to mitigate subject neglect in Stable Diffusion.
Select a prompt and a set of indices matching the subjects you wish to strengthen (the `Check token indices` cell can help map between a word and its index).
"""
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
if torch.cuda.is_available():
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model_id = "CompVis/stable-diffusion-v1-4"
ax_pipe = StableDiffusionAttendAndExcitePipeline.from_pretrained(model_id)
ax_pipe.to(device)
sd_pipe = StableDiffusionPipeline.from_pretrained(model_id)
sd_pipe.to(device)
MAX_INFERENCE_STEPS = 100
MAX_SEED = np.iinfo(np.int32).max
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def get_token_table(prompt: str) -> list[tuple[int, str]]:
tokens = [ax_pipe.tokenizer.decode(t) for t in ax_pipe.tokenizer(prompt)["input_ids"]]
tokens = tokens[1:-1]
return list(enumerate(tokens, start=1))
@spaces.GPU
def run(
prompt: str,
indices_to_alter_str: str,
seed: int = 0,
apply_attend_and_excite: bool = True,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
scale_factor: int = 20,
thresholds: dict[int, float] = {
10: 0.5,
20: 0.8,
},
max_iter_to_alter: int = 25,
) -> PIL.Image.Image:
if num_inference_steps > MAX_INFERENCE_STEPS:
raise gr.Error(f"Number of steps cannot exceed {MAX_INFERENCE_STEPS}.")
generator = torch.Generator(device=device).manual_seed(seed)
if apply_attend_and_excite:
try:
token_indices = list(map(int, indices_to_alter_str.split(",")))
except Exception:
raise ValueError("Invalid token indices.")
out = ax_pipe(
prompt=prompt,
token_indices=token_indices,
guidance_scale=guidance_scale,
generator=generator,
num_inference_steps=num_inference_steps,
max_iter_to_alter=max_iter_to_alter,
thresholds=thresholds,
scale_factor=scale_factor,
)
else:
out = sd_pipe(
prompt=prompt,
guidance_scale=guidance_scale,
generator=generator,
num_inference_steps=num_inference_steps,
)
return out.images[0]
def process_example(
prompt: str,
indices_to_alter_str: str,
seed: int,
apply_attend_and_excite: bool,
) -> tuple[list[tuple[int, str]], PIL.Image.Image]:
token_table = get_token_table(prompt)
result = run(
prompt=prompt,
indices_to_alter_str=indices_to_alter_str,
seed=seed,
apply_attend_and_excite=apply_attend_and_excite,
)
return token_table, result
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(
value="Duplicate Space for private use",
elem_id="duplicate-button",
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
)
with gr.Row():
with gr.Column():
prompt = gr.Text(
label="Prompt",
max_lines=1,
placeholder="A pod of dolphins leaping out of the water in an ocean with a ship on the background",
)
with gr.Accordion(label="Check token indices", open=False):
show_token_indices_button = gr.Button("Show token indices")
token_indices_table = gr.Dataframe(label="Token indices", headers=["Index", "Token"], col_count=2)
token_indices_str = gr.Text(
label="Token indices (a comma-separated list indices of the tokens you wish to alter)",
max_lines=1,
placeholder="4,16",
)
apply_attend_and_excite = gr.Checkbox(label="Apply Attend-and-Excite", value=True)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=MAX_INFERENCE_STEPS,
step=1,
value=50,
)
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0,
maximum=50,
step=0.1,
value=7.5,
)
run_button = gr.Button("Generate")
with gr.Column():
result = gr.Image(label="Result")
with gr.Row():
examples = [
[
"A mouse and a red car",
"2,6",
2098,
True,
],
[
"A mouse and a red car",
"2,6",
2098,
False,
],
[
"A horse and a dog",
"2,5",
123,
True,
],
[
"A horse and a dog",
"2,5",
123,
False,
],
[
"A painting of an elephant with glasses",
"5,7",
123,
True,
],
[
"A painting of an elephant with glasses",
"5,7",
123,
False,
],
[
"A playful kitten chasing a butterfly in a wildflower meadow",
"3,6,10",
123,
True,
],
[
"A playful kitten chasing a butterfly in a wildflower meadow",
"3,6,10",
123,
False,
],
[
"A grizzly bear catching a salmon in a crystal clear river surrounded by a forest",
"2,6,15",
123,
True,
],
[
"A grizzly bear catching a salmon in a crystal clear river surrounded by a forest",
"2,6,15",
123,
False,
],
[
"A pod of dolphins leaping out of the water in an ocean with a ship on the background",
"4,16",
123,
True,
],
[
"A pod of dolphins leaping out of the water in an ocean with a ship on the background",
"4,16",
123,
False,
],
]
gr.Examples(
examples=examples,
inputs=[
prompt,
token_indices_str,
seed,
apply_attend_and_excite,
],
outputs=[
token_indices_table,
result,
],
fn=process_example,
cache_examples=os.getenv("CACHE_EXAMPLES") == "1",
examples_per_page=20,
)
show_token_indices_button.click(
fn=get_token_table,
inputs=prompt,
outputs=token_indices_table,
queue=False,
api_name="get-token-table",
)
gr.on(
triggers=[prompt.submit, token_indices_str.submit, run_button.click],
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=get_token_table,
inputs=prompt,
outputs=token_indices_table,
queue=False,
api_name=False,
).then(
fn=run,
inputs=[
prompt,
token_indices_str,
seed,
apply_attend_and_excite,
num_inference_steps,
guidance_scale,
],
outputs=result,
api_name="run",
)
if __name__ == "__main__":
demo.queue(max_size=20).launch()
|