Spaces:
Runtime error
Runtime error
import os | |
import base64 | |
import numpy as np | |
from PIL import Image | |
import io | |
import requests | |
import replicate | |
from flask import Flask, request | |
import gradio as gr | |
import openai | |
from openai import OpenAI | |
from dotenv import load_dotenv, find_dotenv | |
# Locate the .env file | |
dotenv_path = find_dotenv() | |
load_dotenv(dotenv_path) | |
OPENAI_API_KEY = os.getenv('OPENAI_API_KEY') | |
REPLICATE_API_TOKEN = os.getenv('REPLICATE_API_TOKEN') | |
client = OpenAI() | |
def call_openai(pil_image): | |
# Save the PIL image to a bytes buffer | |
buffered = io.BytesIO() | |
pil_image.save(buffered, format="JPEG") | |
# Encode the image to base64 | |
image_data = base64.b64encode(buffered.getvalue()).decode('utf-8') | |
try: | |
response = client.chat.completions.create( | |
model="gpt-4o", | |
messages=[ | |
{ | |
"role": "user", | |
"content": [ | |
{"type": "text", "text": "You are a product designer. I've attached a moodboard here. In one sentence, what do all of these elements have in common? Answer from a design language perspective, if you were telling another designer to create something similar, including any repeating colors and materials and shapes and textures"}, | |
{ | |
"type": "image_url", | |
"image_url": { | |
"url": "data:image/jpeg;base64," + image_data, | |
}, | |
}, | |
], | |
} | |
], | |
max_tokens=300, | |
) | |
return response.choices[0].message.content | |
except openai.BadRequestError as e: | |
print(e) | |
print("e type") | |
print(type(e)) | |
raise gr.Error(f"Please retry with a different moodboard file") | |
except Exception as e: | |
raise gr.Error("Unknown Error") | |
def image_classifier(moodboard, starter_image, image_strength, prompt): | |
raise gr.Error(header) | |
if moodboard is not None and starter_image is not None: | |
# Convert the numpy array to a PIL image | |
pil_image = Image.fromarray(moodboard.astype('uint8')) | |
starter_image_pil = Image.fromarray(starter_image.astype('uint8')) | |
# Resize the starter image if either dimension is larger than 768 pixels | |
if starter_image_pil.size[0] > 768 or starter_image_pil.size[1] > 768: | |
# Calculate the new size while maintaining the aspect ratio | |
if starter_image_pil.size[0] > starter_image_pil.size[1]: | |
# Width is larger than height | |
new_width = 768 | |
new_height = int((768 / starter_image_pil.size[0]) * starter_image_pil.size[1]) | |
else: | |
# Height is larger than width | |
new_height = 768 | |
new_width = int((768 / starter_image_pil.size[1]) * starter_image_pil.size[0]) | |
# Resize the image | |
starter_image_pil = starter_image_pil.resize((new_width, new_height), Image.LANCZOS) | |
#openai_response = call_openai(pil_image) | |
#openai_response = openai_response.replace('moodboard', '') | |
#openai_response = openai_response.replace('share', '') | |
#openai_response = openai_response.replace('unified', '') | |
# Save the starter image to a bytes buffer | |
buffered = io.BytesIO() | |
starter_image_pil.save(buffered, format="JPEG") | |
# Encode the starter image to base64 | |
starter_image_base64 = base64.b64encode(buffered.getvalue()).decode('utf-8') | |
else: | |
raise gr.Error(f"Please upload a moodboard to control image generation style") | |
# Call Stable Diffusion API with the response from OpenAI | |
# input = { | |
# "width": 768, | |
# "height": 768, | |
# "prompt": "high quality render of " + prompt + ", " + openai_response[12:], | |
# "negative_prompt": "worst quality, low quality, illustration, 2d, painting, cartoons, sketch", | |
# "refine": "expert_ensemble_refiner", | |
# "image": "data:image/jpeg;base64," + starter_image_base64, | |
# "apply_watermark": False, | |
# "num_inference_steps": 25, | |
# "prompt_strength": 1-image_strength, | |
# "num_outputs": 3 | |
# } | |
# output = replicate.run( | |
# "stability-ai/sdxl:7762fd07cf82c948538e41f63f77d685e02b063e37e496e96eefd46c929f9bdc", | |
# input=input | |
# ) | |
# images = [] | |
# for i in range(min(len(output), 3)): | |
# image_url = output[i] | |
# response = requests.get(image_url) | |
# images.append(Image.open(io.BytesIO(response.content))) | |
# # Add empty images if fewer than 3 were returned | |
# while len(images) < 3: | |
# images.append(Image.new('RGB', (768, 768), 'gray')) | |
# return images | |
header = "Set up APIs on HuggingFace or use free at https://app.idai.tools/" | |
demo = gr.Interface(fn=image_classifier, inputs=["image", "image", gr.Slider(0, 1, step=0.05, value=0.2, label="Image Strength"), "text"], outputs=["image", "image", "image"], title=header) | |
demo.launch(share=False) | |