Spaces:
Runtime error
Runtime error
Upload folder using huggingface_hub
Browse files- api/index.py +31 -7
api/index.py
CHANGED
@@ -60,9 +60,20 @@ def image_classifier(moodboard, starter_image, image_strength, prompt):
|
|
60 |
pil_image = Image.fromarray(moodboard.astype('uint8'))
|
61 |
starter_image_pil = Image.fromarray(starter_image.astype('uint8'))
|
62 |
|
63 |
-
# Resize the starter image if
|
64 |
if starter_image_pil.size[0] > 768 or starter_image_pil.size[1] > 768:
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
openai_response = call_openai(pil_image)
|
68 |
openai_response = openai_response.replace('moodboard', '')
|
@@ -84,7 +95,8 @@ def image_classifier(moodboard, starter_image, image_strength, prompt):
|
|
84 |
"image": "data:image/jpeg;base64," + starter_image_base64,
|
85 |
"apply_watermark": False,
|
86 |
"num_inference_steps": 25,
|
87 |
-
"prompt_strength": 1-image_strength
|
|
|
88 |
}
|
89 |
|
90 |
output = replicate.run(
|
@@ -97,9 +109,21 @@ def image_classifier(moodboard, starter_image, image_strength, prompt):
|
|
97 |
print(image_url)
|
98 |
response = requests.get(image_url)
|
99 |
print(response)
|
100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
-
return
|
103 |
|
104 |
|
105 |
# app = Flask(__name__)
|
@@ -108,5 +132,5 @@ def image_classifier(moodboard, starter_image, image_strength, prompt):
|
|
108 |
# @app.route("/")
|
109 |
# def index():
|
110 |
|
111 |
-
demo = gr.Interface(fn=image_classifier, inputs=["image", "image", gr.Slider(0, 1, step=0.025, value=0.2, label="Image Strength"), "text"], outputs="image")
|
112 |
-
demo.launch(share=
|
|
|
60 |
pil_image = Image.fromarray(moodboard.astype('uint8'))
|
61 |
starter_image_pil = Image.fromarray(starter_image.astype('uint8'))
|
62 |
|
63 |
+
# Resize the starter image if either dimension is larger than 768 pixels
|
64 |
if starter_image_pil.size[0] > 768 or starter_image_pil.size[1] > 768:
|
65 |
+
# Calculate the new size while maintaining the aspect ratio
|
66 |
+
if starter_image_pil.size[0] > starter_image_pil.size[1]:
|
67 |
+
# Width is larger than height
|
68 |
+
new_width = 768
|
69 |
+
new_height = int((768 / starter_image_pil.size[0]) * starter_image_pil.size[1])
|
70 |
+
else:
|
71 |
+
# Height is larger than width
|
72 |
+
new_height = 768
|
73 |
+
new_width = int((768 / starter_image_pil.size[1]) * starter_image_pil.size[0])
|
74 |
+
|
75 |
+
# Resize the image
|
76 |
+
starter_image_pil = starter_image_pil.resize((new_width, new_height), Image.LANCZOS)
|
77 |
|
78 |
openai_response = call_openai(pil_image)
|
79 |
openai_response = openai_response.replace('moodboard', '')
|
|
|
95 |
"image": "data:image/jpeg;base64," + starter_image_base64,
|
96 |
"apply_watermark": False,
|
97 |
"num_inference_steps": 25,
|
98 |
+
"prompt_strength": 1-image_strength,
|
99 |
+
"num_outputs": 3,
|
100 |
}
|
101 |
|
102 |
output = replicate.run(
|
|
|
109 |
print(image_url)
|
110 |
response = requests.get(image_url)
|
111 |
print(response)
|
112 |
+
img1 = Image.open(io.BytesIO(response.content))
|
113 |
+
|
114 |
+
image_url = output[1]
|
115 |
+
print(image_url)
|
116 |
+
response = requests.get(image_url)
|
117 |
+
print(response)
|
118 |
+
img2 = Image.open(io.BytesIO(response.content))
|
119 |
+
|
120 |
+
image_url = output[2]
|
121 |
+
print(image_url)
|
122 |
+
response = requests.get(image_url)
|
123 |
+
print(response)
|
124 |
+
img3 = Image.open(io.BytesIO(response.content))
|
125 |
|
126 |
+
return [img1, img2, img3] # Return the image object
|
127 |
|
128 |
|
129 |
# app = Flask(__name__)
|
|
|
132 |
# @app.route("/")
|
133 |
# def index():
|
134 |
|
135 |
+
demo = gr.Interface(fn=image_classifier, inputs=["image", "image", gr.Slider(0, 1, step=0.025, value=0.2, label="Image Strength"), "text"], outputs=["image", "image", "image"])
|
136 |
+
demo.launch(share=False)
|