Spaces:
Running
Running
Upload folder using huggingface_hub
Browse files- .DS_Store +0 -0
- api/index.py +13 -40
.DS_Store
CHANGED
Binary files a/.DS_Store and b/.DS_Store differ
|
|
api/index.py
CHANGED
@@ -64,16 +64,20 @@ def image_classifier(moodboard, prompt):
|
|
64 |
|
65 |
# Call Stable Diffusion API with the response from OpenAI
|
66 |
input = {
|
|
|
|
|
67 |
"prompt": "high quality render of " + prompt + ", " + openai_response[20:],
|
68 |
-
"
|
|
|
|
|
|
|
|
|
69 |
}
|
70 |
|
71 |
output = replicate.run(
|
72 |
-
"stability-ai/
|
73 |
input=input
|
74 |
)
|
75 |
-
|
76 |
-
print(output)
|
77 |
|
78 |
# Download the image from the URL
|
79 |
image_url = output[0]
|
@@ -82,50 +86,19 @@ def image_classifier(moodboard, prompt):
|
|
82 |
print(response)
|
83 |
img1 = Image.open(io.BytesIO(response.content))
|
84 |
|
85 |
-
|
86 |
-
"prompt": "high quality render of " + prompt + ", " + openai_response[20:],
|
87 |
-
"aspect_ratio": "3:2",
|
88 |
-
"output_format": "jpg",
|
89 |
-
"cfg":6
|
90 |
-
}
|
91 |
-
|
92 |
-
output = replicate.run(
|
93 |
-
"stability-ai/stable-diffusion-3",
|
94 |
-
input=input
|
95 |
-
)
|
96 |
-
|
97 |
-
print(output)
|
98 |
-
|
99 |
-
# Download the image from the URL
|
100 |
-
image_url = output[0]
|
101 |
print(image_url)
|
102 |
response = requests.get(image_url)
|
103 |
print(response)
|
104 |
img2 = Image.open(io.BytesIO(response.content))
|
105 |
|
106 |
-
|
107 |
-
"prompt": "high quality render of " + prompt + ", " + openai_response[20:],
|
108 |
-
"aspect_ratio": "4:5",
|
109 |
-
"output_format": "jpg",
|
110 |
-
"cfg":5.5,
|
111 |
-
"output_quality": 85
|
112 |
-
}
|
113 |
-
|
114 |
-
output = replicate.run(
|
115 |
-
"stability-ai/stable-diffusion-3",
|
116 |
-
input=input
|
117 |
-
)
|
118 |
-
|
119 |
-
print(output)
|
120 |
-
|
121 |
-
# Download the image from the URL
|
122 |
-
image_url = output[0]
|
123 |
print(image_url)
|
124 |
response = requests.get(image_url)
|
125 |
print(response)
|
126 |
img3 = Image.open(io.BytesIO(response.content))
|
127 |
-
|
128 |
-
return [img1, img2, img3]
|
129 |
|
130 |
|
131 |
# app = Flask(__name__)
|
@@ -135,4 +108,4 @@ def image_classifier(moodboard, prompt):
|
|
135 |
# def index():
|
136 |
|
137 |
demo = gr.Interface(fn=image_classifier, inputs=["image", "text"], outputs=["image", "image", "image"])
|
138 |
-
demo.launch()
|
|
|
64 |
|
65 |
# Call Stable Diffusion API with the response from OpenAI
|
66 |
input = {
|
67 |
+
"width": 768,
|
68 |
+
"height": 768,
|
69 |
"prompt": "high quality render of " + prompt + ", " + openai_response[20:],
|
70 |
+
"negative_prompt": "worst quality, low quality, illustration, 2d, painting, cartoons, sketch",
|
71 |
+
"refine": "expert_ensemble_refiner",
|
72 |
+
"apply_watermark": False,
|
73 |
+
"num_inference_steps": 25,
|
74 |
+
"num_outputs": 3
|
75 |
}
|
76 |
|
77 |
output = replicate.run(
|
78 |
+
"stability-ai/sdxl:7762fd07cf82c948538e41f63f77d685e02b063e37e496e96eefd46c929f9bdc",
|
79 |
input=input
|
80 |
)
|
|
|
|
|
81 |
|
82 |
# Download the image from the URL
|
83 |
image_url = output[0]
|
|
|
86 |
print(response)
|
87 |
img1 = Image.open(io.BytesIO(response.content))
|
88 |
|
89 |
+
image_url = output[1]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
print(image_url)
|
91 |
response = requests.get(image_url)
|
92 |
print(response)
|
93 |
img2 = Image.open(io.BytesIO(response.content))
|
94 |
|
95 |
+
image_url = output[2]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
print(image_url)
|
97 |
response = requests.get(image_url)
|
98 |
print(response)
|
99 |
img3 = Image.open(io.BytesIO(response.content))
|
100 |
+
|
101 |
+
return [img1, img2, img3] # Return the image object
|
102 |
|
103 |
|
104 |
# app = Flask(__name__)
|
|
|
108 |
# def index():
|
109 |
|
110 |
demo = gr.Interface(fn=image_classifier, inputs=["image", "text"], outputs=["image", "image", "image"])
|
111 |
+
demo.launch(share=True)
|