Spaces:
Sleeping
Sleeping
import gradio as gr | |
import fastai | |
from fastai.vision import * | |
from fastai.utils.mem import * | |
from fastai.vision import open_image, load_learner, image, torch | |
import numpy as np4 | |
import urllib.request | |
import PIL.Image | |
from io import BytesIO | |
import torchvision.transforms as T | |
from PIL import Image | |
import requests | |
from io import BytesIO | |
import fastai | |
from fastai.vision import * | |
from fastai.utils.mem import * | |
from fastai.vision import open_image, load_learner, image, torch | |
import numpy as np | |
import urllib.request | |
from urllib.request import urlretrieve | |
import PIL.Image | |
from io import BytesIO | |
import torchvision.transforms as T | |
import torchvision.transforms as tfms | |
class FeatureLoss(nn.Module): | |
def __init__(self, m_feat, layer_ids, layer_wgts): | |
super().__init__() | |
self.m_feat = m_feat | |
self.loss_features = [self.m_feat[i] for i in layer_ids] | |
self.hooks = hook_outputs(self.loss_features, detach=False) | |
self.wgts = layer_wgts | |
self.metric_names = ['pixel',] + [f'feat_{i}' for i in range(len(layer_ids)) | |
] + [f'gram_{i}' for i in range(len(layer_ids))] | |
def make_features(self, x, clone=False): | |
self.m_feat(x) | |
return [(o.clone() if clone else o) for o in self.hooks.stored] | |
def forward(self, input, target): | |
out_feat = self.make_features(target, clone=True) | |
in_feat = self.make_features(input) | |
self.feat_losses = [base_loss(input,target)] | |
self.feat_losses += [base_loss(f_in, f_out)*w | |
for f_in, f_out, w in zip(in_feat, out_feat, self.wgts)] | |
self.feat_losses += [base_loss(gram_matrix(f_in), gram_matrix(f_out))*w**2 * 5e3 | |
for f_in, f_out, w in zip(in_feat, out_feat, self.wgts)] | |
self.metrics = dict(zip(self.metric_names, self.feat_losses)) | |
return sum(self.feat_losses) | |
def __del__(self): self.hooks.remove() | |
MODEL_URL = "https://www.dropbox.com/s/daf70v42oo93kym/Legacy_best.pkl?dl=1" | |
urllib.request.urlretrieve(MODEL_URL, "Legacy_best.pkl") | |
path = Path(".") | |
learn=load_learner(path, 'Legacy_best.pkl') | |
urlretrieve("https://s.hdnux.com/photos/01/07/33/71/18726490/5/1200x0.jpg","soccer1.jpg") | |
urlretrieve("https://cdn.vox-cdn.com/thumbor/4J8EqJBsS2qEQltIBuFOJWSn8dc=/1400x1400/filters:format(jpeg)/cdn.vox-cdn.com/uploads/chorus_asset/file/22466347/1312893179.jpg","soccer2.jpg") | |
urlretrieve("https://cdn.vox-cdn.com/thumbor/VHa7adj0Oie2Ao12RwKbs40i58s=/0x0:2366x2730/1200x800/filters:focal(1180x774:1558x1152)/cdn.vox-cdn.com/uploads/chorus_image/image/69526697/E5GnQUTWEAEK445.0.jpg","baseball.jpg") | |
urlretrieve("https://baseball.ca/uploads/images/content/Diodati(1).jpeg","baseball2.jpeg") | |
sample_images = [["soccer1.jpg"], | |
["soccer2.jpg"], | |
["baseball.jpg"], | |
["baseball2.jpeg"]] | |
def predict(input): | |
img_t = T.ToTensor()(input) | |
img_fast = Image(img_t) | |
p,img_hr,b = learn.predict(img_fast) | |
x = np.minimum(np.maximum(image2np(img_hr.data*255), 0), 255).astype(np.uint8) | |
img = PIL.Image.fromarray(x) | |
return img | |
gr_interface = gr.Interface(fn=predict, inputs=gr.inputs.Image(), outputs="image", title='Legacy-League',examples=sample_images).launch(); | |