import gradio as gr import fastai from fastai.vision import * from fastai.utils.mem import * from fastai.vision import open_image, load_learner, image, torch import numpy as np4 import urllib.request import PIL.Image from io import BytesIO import torchvision.transforms as T from PIL import Image import requests from io import BytesIO import fastai from fastai.vision import * from fastai.utils.mem import * from fastai.vision import open_image, load_learner, image, torch import numpy as np import urllib.request from urllib.request import urlretrieve import PIL.Image from io import BytesIO import torchvision.transforms as T import torchvision.transforms as tfms class FeatureLoss(nn.Module): def __init__(self, m_feat, layer_ids, layer_wgts): super().__init__() self.m_feat = m_feat self.loss_features = [self.m_feat[i] for i in layer_ids] self.hooks = hook_outputs(self.loss_features, detach=False) self.wgts = layer_wgts self.metric_names = ['pixel',] + [f'feat_{i}' for i in range(len(layer_ids)) ] + [f'gram_{i}' for i in range(len(layer_ids))] def make_features(self, x, clone=False): self.m_feat(x) return [(o.clone() if clone else o) for o in self.hooks.stored] def forward(self, input, target): out_feat = self.make_features(target, clone=True) in_feat = self.make_features(input) self.feat_losses = [base_loss(input,target)] self.feat_losses += [base_loss(f_in, f_out)*w for f_in, f_out, w in zip(in_feat, out_feat, self.wgts)] self.feat_losses += [base_loss(gram_matrix(f_in), gram_matrix(f_out))*w**2 * 5e3 for f_in, f_out, w in zip(in_feat, out_feat, self.wgts)] self.metrics = dict(zip(self.metric_names, self.feat_losses)) return sum(self.feat_losses) def __del__(self): self.hooks.remove() MODEL_URL = "https://www.dropbox.com/s/daf70v42oo93kym/Legacy_best.pkl?dl=1" urllib.request.urlretrieve(MODEL_URL, "Legacy_best.pkl") path = Path(".") learn=load_learner(path, 'Legacy_best.pkl') urlretrieve("https://s.hdnux.com/photos/01/07/33/71/18726490/5/1200x0.jpg","soccer1.jpg") urlretrieve("https://cdn.vox-cdn.com/thumbor/4J8EqJBsS2qEQltIBuFOJWSn8dc=/1400x1400/filters:format(jpeg)/cdn.vox-cdn.com/uploads/chorus_asset/file/22466347/1312893179.jpg","soccer2.jpg") urlretrieve("https://cdn.vox-cdn.com/thumbor/VHa7adj0Oie2Ao12RwKbs40i58s=/0x0:2366x2730/1200x800/filters:focal(1180x774:1558x1152)/cdn.vox-cdn.com/uploads/chorus_image/image/69526697/E5GnQUTWEAEK445.0.jpg","baseball.jpg") urlretrieve("https://baseball.ca/uploads/images/content/Diodati(1).jpeg","baseball2.jpeg") sample_images = [["soccer1.jpg"], ["soccer2.jpg"], ["baseball.jpg"], ["baseball2.jpeg"]] def predict(input): img_t = T.ToTensor()(input) img_fast = Image(img_t) p,img_hr,b = learn.predict(img_fast) x = np.minimum(np.maximum(image2np(img_hr.data*255), 0), 255).astype(np.uint8) img = PIL.Image.fromarray(x) return img gr_interface = gr.Interface(fn=predict, inputs=gr.inputs.Image(), outputs="image", title='Legacy-League',examples=sample_images).launch();