LennyHood commited on
Commit
057d204
1 Parent(s): bc76f4d

Update inference.py

Browse files
Files changed (1) hide show
  1. inference.py +2 -61
inference.py CHANGED
@@ -1,62 +1,3 @@
1
- from lcm_pipeline import LatentConsistencyModelPipeline
2
- from lcm_scheduler import LCMScheduler
3
 
4
- from diffusers import AutoencoderKL, UNet2DConditionModel
5
- from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
6
- from transformers import CLIPTokenizer, CLIPTextModel, CLIPImageProcessor
7
-
8
- import os
9
- import torch
10
- from tqdm import tqdm
11
- from safetensors.torch import load_file
12
-
13
- # Input Prompt:
14
- prompt = "Self-portrait oil painting, a beautiful cyborg with golden hair"
15
-
16
- # Save Path:
17
- save_path = "./lcm_images"
18
- os.makedirs(save_path, exist_ok=True)
19
-
20
-
21
- # Origin SD Model ID:
22
- model_id = "digiplay/DreamShaper_7"
23
-
24
-
25
- # Initalize Diffusers Model:
26
- vae = AutoencoderKL.from_pretrained(model_id, subfolder="vae")
27
- text_encoder = CLIPTextModel.from_pretrained(model_id, subfolder="text_encoder")
28
- tokenizer = CLIPTokenizer.from_pretrained(model_id, subfolder="tokenizer")
29
- unet = UNet2DConditionModel.from_pretrained(model_id, subfolder="unet", device_map=None, low_cpu_mem_usage=False, local_files_only=True)
30
- safety_checker = StableDiffusionSafetyChecker.from_pretrained(model_id, subfolder="safety_checker")
31
- feature_extractor = CLIPImageProcessor.from_pretrained(model_id, subfolder="feature_extractor")
32
-
33
-
34
- # Initalize Scheduler:
35
- scheduler = LCMScheduler(beta_start=0.00085, beta_end=0.0120, beta_schedule="scaled_linear", prediction_type="epsilon")
36
-
37
-
38
- # Replace the unet with LCM:
39
- lcm_unet_ckpt = "./LCM_Dreamshaper_v7_4k.safetensors"
40
- ckpt = load_file(lcm_unet_ckpt)
41
- m, u = unet.load_state_dict(ckpt, strict=False)
42
- if len(m) > 0:
43
- print("missing keys:")
44
- print(m)
45
- if len(u) > 0:
46
- print("unexpected keys:")
47
- print(u)
48
-
49
-
50
- # LCM Pipeline:
51
- pipe = LatentConsistencyModelPipeline(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor)
52
- pipe = pipe.to("cuda")
53
-
54
-
55
- # Output Images:
56
- images = pipe(prompt=prompt, num_images_per_prompt=4, num_inference_steps=4, guidance_scale=8.0, lcm_origin_steps=50).images
57
-
58
- # Save Images:
59
- for i in tqdm(range(len(images))):
60
- output_path = os.path.join(save_path, "{}.png".format(i))
61
- image = images[i]
62
- image.save(output_path)
 
1
+ import gradio as gr
 
2
 
3
+ gr.load("models/SimianLuo/LCM_Dreamshaper_v7").launch()