Spaces:
Runtime error
Runtime error
Update inference.py
Browse files- inference.py +2 -61
inference.py
CHANGED
@@ -1,62 +1,3 @@
|
|
1 |
-
|
2 |
-
from lcm_scheduler import LCMScheduler
|
3 |
|
4 |
-
|
5 |
-
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
6 |
-
from transformers import CLIPTokenizer, CLIPTextModel, CLIPImageProcessor
|
7 |
-
|
8 |
-
import os
|
9 |
-
import torch
|
10 |
-
from tqdm import tqdm
|
11 |
-
from safetensors.torch import load_file
|
12 |
-
|
13 |
-
# Input Prompt:
|
14 |
-
prompt = "Self-portrait oil painting, a beautiful cyborg with golden hair"
|
15 |
-
|
16 |
-
# Save Path:
|
17 |
-
save_path = "./lcm_images"
|
18 |
-
os.makedirs(save_path, exist_ok=True)
|
19 |
-
|
20 |
-
|
21 |
-
# Origin SD Model ID:
|
22 |
-
model_id = "digiplay/DreamShaper_7"
|
23 |
-
|
24 |
-
|
25 |
-
# Initalize Diffusers Model:
|
26 |
-
vae = AutoencoderKL.from_pretrained(model_id, subfolder="vae")
|
27 |
-
text_encoder = CLIPTextModel.from_pretrained(model_id, subfolder="text_encoder")
|
28 |
-
tokenizer = CLIPTokenizer.from_pretrained(model_id, subfolder="tokenizer")
|
29 |
-
unet = UNet2DConditionModel.from_pretrained(model_id, subfolder="unet", device_map=None, low_cpu_mem_usage=False, local_files_only=True)
|
30 |
-
safety_checker = StableDiffusionSafetyChecker.from_pretrained(model_id, subfolder="safety_checker")
|
31 |
-
feature_extractor = CLIPImageProcessor.from_pretrained(model_id, subfolder="feature_extractor")
|
32 |
-
|
33 |
-
|
34 |
-
# Initalize Scheduler:
|
35 |
-
scheduler = LCMScheduler(beta_start=0.00085, beta_end=0.0120, beta_schedule="scaled_linear", prediction_type="epsilon")
|
36 |
-
|
37 |
-
|
38 |
-
# Replace the unet with LCM:
|
39 |
-
lcm_unet_ckpt = "./LCM_Dreamshaper_v7_4k.safetensors"
|
40 |
-
ckpt = load_file(lcm_unet_ckpt)
|
41 |
-
m, u = unet.load_state_dict(ckpt, strict=False)
|
42 |
-
if len(m) > 0:
|
43 |
-
print("missing keys:")
|
44 |
-
print(m)
|
45 |
-
if len(u) > 0:
|
46 |
-
print("unexpected keys:")
|
47 |
-
print(u)
|
48 |
-
|
49 |
-
|
50 |
-
# LCM Pipeline:
|
51 |
-
pipe = LatentConsistencyModelPipeline(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor)
|
52 |
-
pipe = pipe.to("cuda")
|
53 |
-
|
54 |
-
|
55 |
-
# Output Images:
|
56 |
-
images = pipe(prompt=prompt, num_images_per_prompt=4, num_inference_steps=4, guidance_scale=8.0, lcm_origin_steps=50).images
|
57 |
-
|
58 |
-
# Save Images:
|
59 |
-
for i in tqdm(range(len(images))):
|
60 |
-
output_path = os.path.join(save_path, "{}.png".format(i))
|
61 |
-
image = images[i]
|
62 |
-
image.save(output_path)
|
|
|
1 |
+
import gradio as gr
|
|
|
2 |
|
3 |
+
gr.load("models/SimianLuo/LCM_Dreamshaper_v7").launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|