File size: 17,169 Bytes
a0bcaae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c760a5e
 
 
a0bcaae
 
 
 
 
 
 
 
 
 
 
 
 
 
c760a5e
 
a0bcaae
 
 
 
 
 
c760a5e
 
a0bcaae
b2af35b
a0bcaae
 
 
 
 
 
 
 
c760a5e
 
 
 
a0bcaae
 
 
 
 
 
 
 
 
c760a5e
 
a0bcaae
 
 
c760a5e
 
 
 
 
 
 
 
a0bcaae
c760a5e
 
a0bcaae
c760a5e
a0bcaae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e722a6c
 
 
a0bcaae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c760a5e
 
a0bcaae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c760a5e
 
a0bcaae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c760a5e
 
a0bcaae
c760a5e
 
a0bcaae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c760a5e
 
 
 
 
 
 
 
 
 
 
a0bcaae
 
 
 
 
 
c760a5e
 
 
 
 
a0bcaae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c760a5e
 
a0bcaae
 
 
c760a5e
 
a0bcaae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c760a5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4724fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0bcaae
f4724fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0bcaae
c760a5e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES.  All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto.  Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.

from socket import has_dualstack_ipv6
import sys
import copy
import traceback
import math
import numpy as np
from PIL import Image, ImageDraw, ImageFont
import torch
import torch.fft
import torch.nn as nn
import torch.nn.functional as F
import matplotlib.cm
import dnnlib
from torch_utils.ops import upfirdn2d
import legacy  # pylint: disable=import-error

# ----------------------------------------------------------------------------


class CapturedException(Exception):
    def __init__(self, msg=None):
        if msg is None:
            _type, value, _traceback = sys.exc_info()
            assert value is not None
            if isinstance(value, CapturedException):
                msg = str(value)
            else:
                msg = traceback.format_exc()
        assert isinstance(msg, str)
        super().__init__(msg)

# ----------------------------------------------------------------------------


class CaptureSuccess(Exception):
    def __init__(self, out):
        super().__init__()
        self.out = out

# ----------------------------------------------------------------------------


def add_watermark_np(input_image_array, watermark_text="AI Generated"):
    image = Image.fromarray(np.uint8(input_image_array)).convert("RGBA")

    # Initialize text image
    txt = Image.new('RGBA', image.size, (255, 255, 255, 0))
    font = ImageFont.truetype('arial.ttf', round(25/512*image.size[0]))
    d = ImageDraw.Draw(txt)

    text_width, text_height = font.getsize(watermark_text)
    text_position = (image.size[0] - text_width -
                     10, image.size[1] - text_height - 10)
    # white color with the alpha channel set to semi-transparent
    text_color = (255, 255, 255, 128)

    # Draw the text onto the text canvas
    d.text(text_position, watermark_text, font=font, fill=text_color)

    # Combine the image with the watermark
    watermarked = Image.alpha_composite(image, txt)
    watermarked_array = np.array(watermarked)
    return watermarked_array

# ----------------------------------------------------------------------------


class Renderer:
    def __init__(self, disable_timing=False):
        self._device = torch.device('cuda' if torch.cuda.is_available(
        ) else 'mps' if torch.backends.mps.is_available() else 'cpu')
        self._dtype = torch.float32 if self._device.type == 'mps' else torch.float64
        self._pkl_data = dict()    # {pkl: dict | CapturedException, ...}
        self._networks = dict()    # {cache_key: torch.nn.Module, ...}
        self._pinned_bufs = dict()    # {(shape, dtype): torch.Tensor, ...}
        self._cmaps = dict()    # {name: torch.Tensor, ...}
        self._is_timing = False
        if not disable_timing:
            self._start_event = torch.cuda.Event(enable_timing=True)
            self._end_event = torch.cuda.Event(enable_timing=True)
        self._disable_timing = disable_timing
        self._net_layers = dict()    # {cache_key: [dnnlib.EasyDict, ...], ...}

    def render(self, **args):
        if self._disable_timing:
            self._is_timing = False
        else:
            self._start_event.record(torch.cuda.current_stream(self._device))
            self._is_timing = True
        res = dnnlib.EasyDict()
        try:
            init_net = False
            if not hasattr(self, 'G'):
                init_net = True
            if hasattr(self, 'pkl'):
                if self.pkl != args['pkl']:
                    init_net = True
            if hasattr(self, 'w_load'):
                if self.w_load is not args['w_load']:
                    init_net = True
            if hasattr(self, 'w0_seed'):
                if self.w0_seed != args['w0_seed']:
                    init_net = True
            if hasattr(self, 'w_plus'):
                if self.w_plus != args['w_plus']:
                    init_net = True
            if args['reset_w']:
                init_net = True
            res.init_net = init_net
            if init_net:
                self.init_network(res, **args)
            self._render_drag_impl(res, **args)
        except:
            res.error = CapturedException()
        if not self._disable_timing:
            self._end_event.record(torch.cuda.current_stream(self._device))
        if 'image' in res:
            res.image = self.to_cpu(res.image).detach().numpy()
            res.image = add_watermark_np(res.image, 'AI Generated')
        if 'stats' in res:
            res.stats = self.to_cpu(res.stats).detach().numpy()
        if 'error' in res:
            res.error = str(res.error)
        # if 'stop' in res and res.stop:

        if self._is_timing and not self._disable_timing:
            self._end_event.synchronize()
            res.render_time = self._start_event.elapsed_time(
                self._end_event) * 1e-3
            self._is_timing = False
        return res

    def get_network(self, pkl, key, **tweak_kwargs):
        data = self._pkl_data.get(pkl, None)
        if data is None:
            print(f'Loading "{pkl}"... ', end='', flush=True)
            try:
                with dnnlib.util.open_url(pkl, verbose=False) as f:
                    data = legacy.load_network_pkl(f)
                print('Done.')
            except:
                data = CapturedException()
                print('Failed!')
            self._pkl_data[pkl] = data
            self._ignore_timing()
        if isinstance(data, CapturedException):
            raise data

        orig_net = data[key]
        cache_key = (orig_net, self._device, tuple(
            sorted(tweak_kwargs.items())))
        net = self._networks.get(cache_key, None)
        if net is None:
            try:
                if 'stylegan2' in pkl:
                    from training.networks_stylegan2 import Generator
                elif 'stylegan3' in pkl:
                    from training.networks_stylegan3 import Generator
                elif 'stylegan_human' in pkl:
                    from stylegan_human.training_scripts.sg2.training.networks import Generator
                else:
                    raise NameError('Cannot infer model type from pkl name!')

                print(data[key].init_args)
                print(data[key].init_kwargs)
                if 'stylegan_human' in pkl:
                    net = Generator(
                        *data[key].init_args, **data[key].init_kwargs, square=False, padding=True)
                else:
                    net = Generator(*data[key].init_args,
                                    **data[key].init_kwargs)
                net.load_state_dict(data[key].state_dict())
                net.to(self._device)
            except:
                net = CapturedException()
            self._networks[cache_key] = net
            self._ignore_timing()
        if isinstance(net, CapturedException):
            raise net
        return net

    def _get_pinned_buf(self, ref):
        key = (tuple(ref.shape), ref.dtype)
        buf = self._pinned_bufs.get(key, None)
        if buf is None:
            buf = torch.empty(ref.shape, dtype=ref.dtype).pin_memory()
            self._pinned_bufs[key] = buf
        return buf

    def to_device(self, buf):
        return self._get_pinned_buf(buf).copy_(buf).to(self._device)

    def to_cpu(self, buf):
        return self._get_pinned_buf(buf).copy_(buf).clone()

    def _ignore_timing(self):
        self._is_timing = False

    def _apply_cmap(self, x, name='viridis'):
        cmap = self._cmaps.get(name, None)
        if cmap is None:
            cmap = matplotlib.cm.get_cmap(name)
            cmap = cmap(np.linspace(0, 1, num=1024), bytes=True)[:, :3]
            cmap = self.to_device(torch.from_numpy(cmap))
            self._cmaps[name] = cmap
        hi = cmap.shape[0] - 1
        x = (x * hi + 0.5).clamp(0, hi).to(torch.int64)
        x = torch.nn.functional.embedding(x, cmap)
        return x

    def init_network(self, res,
                     pkl=None,
                     w0_seed=0,
                     w_load=None,
                     w_plus=True,
                     noise_mode='const',
                     trunc_psi=0.7,
                     trunc_cutoff=None,
                     input_transform=None,
                     lr=0.001,
                     **kwargs
                     ):
        # Dig up network details.
        self.pkl = pkl
        G = self.get_network(pkl, 'G_ema')
        self.G = G
        res.img_resolution = G.img_resolution
        res.num_ws = G.num_ws
        res.has_noise = any('noise_const' in name for name,
                            _buf in G.synthesis.named_buffers())
        res.has_input_transform = (
            hasattr(G.synthesis, 'input') and hasattr(G.synthesis.input, 'transform'))
        res.stop = False
        # Set input transform.
        if res.has_input_transform:
            m = np.eye(3)
            try:
                if input_transform is not None:
                    m = np.linalg.inv(np.asarray(input_transform))
            except np.linalg.LinAlgError:
                res.error = CapturedException()
            G.synthesis.input.transform.copy_(torch.from_numpy(m))

        # Generate random latents.
        self.w0_seed = w0_seed
        self.w_load = w_load

        if self.w_load is None:
            # Generate random latents.
            z = torch.from_numpy(np.random.RandomState(w0_seed).randn(
                1, 512)).to(self._device, dtype=self._dtype)

            # Run mapping network.
            label = torch.zeros([1, G.c_dim], device=self._device)
            w = G.mapping(z, label, truncation_psi=trunc_psi,
                          truncation_cutoff=trunc_cutoff)
        else:
            w = self.w_load.clone().to(self._device)

        self.w0 = w.detach().clone()
        self.w_plus = w_plus
        if w_plus:
            self.w = w.detach()
        else:
            self.w = w[:, 0, :].detach()
        self.w.requires_grad = True
        self.w_optim = torch.optim.Adam([self.w], lr=lr)

        self.feat_refs = None
        self.points0_pt = None

    def update_lr(self, lr):

        del self.w_optim
        self.w_optim = torch.optim.Adam([self.w], lr=lr)
        print(f'Rebuild optimizer with lr: {lr}')
        print('    Remain feat_refs and points0_pt')

    def _render_drag_impl(self, res,
                          points=[],
                          targets=[],
                          mask=None,
                          lambda_mask=10,
                          reg=0,
                          feature_idx=5,
                          r1=3,
                          r2=12,
                          random_seed=0,
                          noise_mode='const',
                          trunc_psi=0.7,
                          force_fp32=False,
                          layer_name=None,
                          sel_channels=3,
                          base_channel=0,
                          img_scale_db=0,
                          img_normalize=False,
                          untransform=False,
                          is_drag=False,
                          reset=False,
                          to_pil=False,
                          **kwargs
                          ):
        try:
            G = self.G
            ws = self.w
            if ws.dim() == 2:
                ws = ws.unsqueeze(1).repeat(1, 6, 1)
            ws = torch.cat([ws[:, :6, :], self.w0[:, 6:, :]], dim=1)
            if hasattr(self, 'points'):
                if len(points) != len(self.points):
                    reset = True
            if reset:
                self.feat_refs = None
                self.points0_pt = None
            self.points = points

            # Run synthesis network.
            label = torch.zeros([1, G.c_dim], device=self._device)
            img, feat = G(ws, label, truncation_psi=trunc_psi,
                          noise_mode=noise_mode, input_is_w=True, return_feature=True)

            h, w = G.img_resolution, G.img_resolution

            if is_drag:
                X = torch.linspace(0, h, h)
                Y = torch.linspace(0, w, w)
                xx, yy = torch.meshgrid(X, Y)
                feat_resize = F.interpolate(
                    feat[feature_idx], [h, w], mode='bilinear')
                if self.feat_refs is None:
                    self.feat0_resize = F.interpolate(
                        feat[feature_idx].detach(), [h, w], mode='bilinear')
                    self.feat_refs = []
                    for point in points:
                        py, px = round(point[0]), round(point[1])
                        self.feat_refs.append(self.feat0_resize[:, :, py, px])
                    self.points0_pt = torch.Tensor(points).unsqueeze(
                        0).to(self._device)  # 1, N, 2

                # Point tracking with feature matching
                with torch.no_grad():
                    for j, point in enumerate(points):
                        r = round(r2 / 512 * h)
                        up = max(point[0] - r, 0)
                        down = min(point[0] + r + 1, h)
                        left = max(point[1] - r, 0)
                        right = min(point[1] + r + 1, w)
                        feat_patch = feat_resize[:, :, up:down, left:right]
                        L2 = torch.linalg.norm(
                            feat_patch - self.feat_refs[j].reshape(1, -1, 1, 1), dim=1)
                        _, idx = torch.min(L2.view(1, -1), -1)
                        width = right - left
                        point = [idx.item() // width + up, idx.item() %
                                 width + left]
                        points[j] = point

                res.points = [[point[0], point[1]] for point in points]

                # Motion supervision
                loss_motion = 0
                res.stop = True
                for j, point in enumerate(points):
                    direction = torch.Tensor(
                        [targets[j][1] - point[1], targets[j][0] - point[0]])
                    if torch.linalg.norm(direction) > max(2 / 512 * h, 2):
                        res.stop = False
                    if torch.linalg.norm(direction) > 1:
                        distance = (
                            (xx.to(self._device) - point[0])**2 + (yy.to(self._device) - point[1])**2)**0.5
                        relis, reljs = torch.where(
                            distance < round(r1 / 512 * h))
                        direction = direction / \
                            (torch.linalg.norm(direction) + 1e-7)
                        gridh = (relis-direction[1]) / (h-1) * 2 - 1
                        gridw = (reljs-direction[0]) / (w-1) * 2 - 1
                        grid = torch.stack(
                            [gridw, gridh], dim=-1).unsqueeze(0).unsqueeze(0)
                        target = F.grid_sample(
                            feat_resize.float(), grid, align_corners=True).squeeze(2)
                        loss_motion += F.l1_loss(
                            feat_resize[:, :, relis, reljs], target.detach())

                loss = loss_motion
                if mask is not None:
                    if mask.min() == 0 and mask.max() == 1:
                        mask_usq = mask.to(
                            self._device).unsqueeze(0).unsqueeze(0)
                        loss_fix = F.l1_loss(
                            feat_resize * mask_usq, self.feat0_resize * mask_usq)
                        loss += lambda_mask * loss_fix

                # latent code regularization
                loss += reg * F.l1_loss(ws, self.w0)
                if not res.stop:
                    self.w_optim.zero_grad()
                    loss.backward()
                    self.w_optim.step()

            # Scale and convert to uint8.
            img = img[0]
            if img_normalize:
                img = img / img.norm(float('inf'),
                                     dim=[1, 2], keepdim=True).clip(1e-8, 1e8)
            img = img * (10 ** (img_scale_db / 20))
            img = (img * 127.5 + 128).clamp(0,
                                            255).to(torch.uint8).permute(1, 2, 0)
            if to_pil:
                from PIL import Image
                img = img.cpu().numpy()
                img = Image.fromarray(img)
            res.image = img
            res.w = ws.detach().cpu().numpy()
        except Exception as e:
            import os
            print(f'Renderer error: {e}')
            print("Out of memory error occurred. Restarting the app...")
            os.execv(sys.executable, ['python'] + sys.argv)

# ----------------------------------------------------------------------------