Spaces:
Sleeping
Sleeping
# Step 2: Import necessary libraries | |
import gradio as gr | |
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM | |
# Step 3: Load the model and tokenizer | |
model_name = "unsloth/Llama-3.2-1B" | |
try: | |
# Attempt to load the tokenizer and model | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
print(f"Successfully loaded model: {model_name}") | |
except Exception as e: | |
# Handle errors and notify the user | |
print(f"Error loading model or tokenizer: {e}") | |
tokenizer = None | |
model = None | |
# Step 4: Use a pipeline for text generation if model is loaded | |
if model is not None and tokenizer is not None: | |
text_gen_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer) | |
else: | |
text_gen_pipeline = None | |
# Step 5: Define the text generation function | |
def generate_text(prompt, max_length=40, temperature=0.8, top_p=0.9, top_k=40, repetition_penalty=1.5, no_repeat_ngram_size=4): | |
if text_gen_pipeline is None: | |
return "Model not loaded. Please check the model name or try a different one." | |
generated_text = text_gen_pipeline(prompt, | |
max_length=max_length, | |
temperature=temperature, | |
top_p=top_p, | |
top_k=top_k, | |
repetition_penalty=repetition_penalty, | |
no_repeat_ngram_size=no_repeat_ngram_size, | |
num_return_sequences=1) | |
return generated_text[0]['generated_text'] | |
# Step 6: Set up the Gradio interface | |
with gr.Blocks() as demo: | |
gr.Markdown("## Text Generation with Llama 3.2 - 1B") | |
gr.Markdown("For more details, check out this [Google Colab notebook](https://colab.research.google.com/drive/1TCyQNWMQzsjit_z3-0jHCQYfFTpawh8r#scrollTo=5-6MhJj0ZVpk).") | |
prompt_input = gr.Textbox(label="Input (Prompt)", placeholder="Enter your prompt here...") | |
max_length_input = gr.Slider(minimum=10, maximum=200, value=40, step=10, label="Maximum Length") | |
temperature_input = gr.Slider(minimum=0.1, maximum=1.0, value=0.8, step=0.1, label="Temperature (creativity)") | |
top_p_input = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.1, label="Top-p (nucleus sampling)") | |
top_k_input = gr.Slider(minimum=1, maximum=100, value=40, step=1, label="Top-k (sampling diversity)") | |
repetition_penalty_input = gr.Slider(minimum=1.0, maximum=2.0, value=1.5, step=0.1, label="Repetition Penalty") | |
no_repeat_ngram_size_input = gr.Slider(minimum=1, maximum=10, value=4, step=1, label="No Repeat N-Gram Size") | |
output_text = gr.Textbox(label="Generated Text") | |
generate_button = gr.Button("Generate") | |
generate_button.click(generate_text, | |
inputs=[prompt_input, max_length_input, temperature_input, top_p_input, top_k_input, repetition_penalty_input, no_repeat_ngram_size_input], | |
outputs=output_text) | |
# Step 7: Launch the app | |
demo.launch() | |