Llama_3.2_Meta / app.py
Leo8613's picture
Update app.py
1b3fa16 verified
# Step 2: Import necessary libraries
import gradio as gr
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
# Step 3: Load the model and tokenizer
model_name = "unsloth/Llama-3.2-1B"
try:
# Attempt to load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
print(f"Successfully loaded model: {model_name}")
except Exception as e:
# Handle errors and notify the user
print(f"Error loading model or tokenizer: {e}")
tokenizer = None
model = None
# Step 4: Use a pipeline for text generation if model is loaded
if model is not None and tokenizer is not None:
text_gen_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer)
else:
text_gen_pipeline = None
# Step 5: Define the text generation function
def generate_text(prompt, max_length=40, temperature=0.8, top_p=0.9, top_k=40, repetition_penalty=1.5, no_repeat_ngram_size=4):
if text_gen_pipeline is None:
return "Model not loaded. Please check the model name or try a different one."
generated_text = text_gen_pipeline(prompt,
max_length=max_length,
temperature=temperature,
top_p=top_p,
top_k=top_k,
repetition_penalty=repetition_penalty,
no_repeat_ngram_size=no_repeat_ngram_size,
num_return_sequences=1)
return generated_text[0]['generated_text']
# Step 6: Set up the Gradio interface
with gr.Blocks() as demo:
gr.Markdown("## Text Generation with Llama 3.2 - 1B")
gr.Markdown("For more details, check out this [Google Colab notebook](https://colab.research.google.com/drive/1TCyQNWMQzsjit_z3-0jHCQYfFTpawh8r#scrollTo=5-6MhJj0ZVpk).")
prompt_input = gr.Textbox(label="Input (Prompt)", placeholder="Enter your prompt here...")
max_length_input = gr.Slider(minimum=10, maximum=200, value=40, step=10, label="Maximum Length")
temperature_input = gr.Slider(minimum=0.1, maximum=1.0, value=0.8, step=0.1, label="Temperature (creativity)")
top_p_input = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.1, label="Top-p (nucleus sampling)")
top_k_input = gr.Slider(minimum=1, maximum=100, value=40, step=1, label="Top-k (sampling diversity)")
repetition_penalty_input = gr.Slider(minimum=1.0, maximum=2.0, value=1.5, step=0.1, label="Repetition Penalty")
no_repeat_ngram_size_input = gr.Slider(minimum=1, maximum=10, value=4, step=1, label="No Repeat N-Gram Size")
output_text = gr.Textbox(label="Generated Text")
generate_button = gr.Button("Generate")
generate_button.click(generate_text,
inputs=[prompt_input, max_length_input, temperature_input, top_p_input, top_k_input, repetition_penalty_input, no_repeat_ngram_size_input],
outputs=output_text)
# Step 7: Launch the app
demo.launch()