File size: 4,655 Bytes
a001281
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import os, io, csv, math, random
import numpy as np
from einops import rearrange
from decord import VideoReader

import torch
import torchvision.transforms as transforms
from torch.utils.data.dataset import Dataset
from PIA.utils.util import zero_rank_print, detect_edges
import cv2 

def get_score(video_data,
              cond_frame_idx,
              weight=[1.0, 1.0, 1.0, 1.0],
              use_edge=True):
    """
        Similar to get_score under utils/util.py/detect_edges
    """
    """
        the shape of video_data is f c h w, np.ndarray
    """
    h, w = video_data.shape[1], video_data.shape[2]

    cond_frame = video_data[cond_frame_idx]
    cond_hsv_list = list(
        cv2.split(
            cv2.cvtColor(cond_frame.astype(np.float32), cv2.COLOR_RGB2HSV)))

    if use_edge:
        cond_frame_lum = cond_hsv_list[-1]
        cond_frame_edge = detect_edges(cond_frame_lum.astype(np.uint8))
        cond_hsv_list.append(cond_frame_edge)

    score_sum = []

    for frame_idx in range(video_data.shape[0]):
        frame = video_data[frame_idx]
        hsv_list = list(
            cv2.split(cv2.cvtColor(frame.astype(np.float32),
                                   cv2.COLOR_RGB2HSV)))

        if use_edge:
            frame_img_lum = hsv_list[-1]
            frame_img_edge = detect_edges(lum=frame_img_lum.astype(np.uint8))
            hsv_list.append(frame_img_edge)

        hsv_diff = [
            np.abs(hsv_list[c] - cond_hsv_list[c]) for c in range(len(weight))
        ]
        hsv_mse = [np.sum(hsv_diff[c]) * weight[c] for c in range(len(weight))]
        score_sum.append(sum(hsv_mse) / (h * w) / (sum(weight)))

    return score_sum

class WebVid10M(Dataset):
    def __init__(
            self,
            csv_path, video_folder,
            sample_size=256, sample_stride=4, sample_n_frames=16,
            is_image=False,
        ):
        zero_rank_print(f"loading annotations from {csv_path} ...")
        with open(csv_path, 'r') as csvfile:
            self.dataset = list(csv.DictReader(csvfile))
        self.length = len(self.dataset)
        zero_rank_print(f"data scale: {self.length}")

        self.video_folder    = video_folder
        self.sample_stride   = sample_stride
        self.sample_n_frames = sample_n_frames
        self.is_image        = is_image
        
        sample_size = tuple(sample_size) if not isinstance(sample_size, int) else (sample_size, sample_size)
        self.pixel_transforms = transforms.Compose([
            transforms.RandomHorizontalFlip(),
            transforms.Resize(sample_size[0]),
            transforms.CenterCrop(sample_size),
            transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True),
        ])
    
    def get_batch(self, idx):
        video_dict = self.dataset[idx]
        videoid, name, page_dir = video_dict['videoid'], video_dict['name'], video_dict['page_dir']
        
        video_dir    = os.path.join(self.video_folder, f"{videoid}.mp4")
        video_reader = VideoReader(video_dir)
        video_length = len(video_reader)
        total_frames = len(video_reader) 
        clip_length = min(video_length, (self.sample_n_frames - 1) * self.sample_stride + 1)
        start_idx   = random.randint(0, video_length - clip_length)
        batch_index = np.linspace(start_idx, start_idx + clip_length - 1, self.sample_n_frames, dtype=int)
        
        frame_indice = [random.randint(0, total_frames - 1)]
        pixel_values_np = video_reader.get_batch(frame_indice).asnumpy()
        cond_frames = random.randint(0, self.sample_n_frames - 1)

        # f h w c -> f c h w
        pixel_values = torch.from_numpy(pixel_values_np).permute(0, 3, 1, 2).contiguous()
        pixel_values = pixel_values / 255.
        del video_reader

        if self.is_image:
            pixel_values = pixel_values[0]

        return pixel_values, name, cond_frames, videoid

    def __len__(self):
        return self.length

    def __getitem__(self, idx):
        while True:
            try:
                video, name, cond_frames, videoid = self.get_batch(idx)
                break

            except Exception as e:
                # zero_rank_print(e)
                idx = random.randint(0, self.length-1)

        video  = self.pixel_transforms(video)
        video_ = video.clone().permute(0, 2, 3, 1).numpy() / 2 + 0.5
        video_ = video_ * 255
        #video_ = video_.astype(np.uint8)
        score  = get_score(video_, cond_frame_idx=cond_frames)
        del video_
        sample = dict(pixel_values=video, text=name, score=score, cond_frames=cond_frames, vid=videoid)
        return sample