Spaces:
Runtime error
Runtime error
File size: 9,989 Bytes
a001281 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
import os
import imageio
import numpy as np
from typing import Union, Optional
import torch
import torchvision
import torch.distributed as dist
from tqdm import tqdm
from einops import rearrange
import cv2
import math
import moviepy.editor as mpy
from PIL import Image
# We recommend to use the following affinity score(motion magnitude)
# Also encourage to try to construct different score by yourself
# RANGE_LIST = [
# [1.0, 0.9, 0.85, 0.85, 0.85, 0.8], # 0 Small Motion
# [1.0, 0.8, 0.8, 0.8, 0.79, 0.78, 0.75], # Moderate Motion
# [1.0, 0.8, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.6, 0.5, 0.5], # Large Motion
# # [1.0, 0.8, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.6], # Large Motion
# # [1.0, 0.65, 0.6], # candidate moderate
# # [1.0, 0.65, 0.6, 0.6, 0.6, 0.5, 0.5, 0.5, 0.5, 0.4], # candidate large
# [1.0 , 0.9 , 0.85, 0.85, 0.85, 0.8 , 0.8 , 0.8 , 0.8 , 0.8 , 0.8 , 0.8 , 0.85, 0.85, 0.9 , 1.0 ], # Loop
# [1.0 , 0.8 , 0.8 , 0.8 , 0.79, 0.78, 0.75, 0.75, 0.75, 0.75, 0.75, 0.78, 0.79, 0.8 , 0.8 , 1.0 ], # Loop
# [1.0 , 0.8 , 0.7 , 0.7 , 0.7 , 0.7 , 0.6 , 0.5 , 0.5 , 0.6 , 0.7 , 0.7 , 0.7 , 0.7 , 0.8 , 1.0 ], # Loop
# # [1.0], # Static
# # [0],
# # [0.6, 0.5, 0.5, 0.45, 0.45, 0.4], # Style Transfer Test
# # [0.4, 0.3, 0.3, 0.25, 0.25, 0.2], # Style Transfer
# [0.5, 0.2], # Style Transfer Large Motion
# [0.5, 0.4, 0.4, 0.4, 0.35, 0.35, 0.3, 0.25, 0.2], # Style Transfer Moderate Motion
# [0.5, 0.4, 0.4, 0.4, 0.35, 0.3], # Style Transfer Candidate Small Motion
# ]
RANGE_LIST = [
[0.5, 0.4, 0.4, 0.4, 0.35, 0.3], # Style Transfer Candidate Small Motion
[0.5, 0.4, 0.4, 0.4, 0.35, 0.35, 0.3, 0.25, 0.2], # Style Transfer Moderate Motion
[0.5, 0.2], # Style Transfer Large Motion
]
def zero_rank_print(s):
if (not dist.is_initialized()) or (dist.is_initialized() and dist.get_rank() == 0): print("### " + s)
def save_videos_mp4(video: torch.Tensor, path: str, fps: int=8):
video = rearrange(video, "b c t h w -> t b c h w")
num_frames, batch_size, channels, height, width = video.shape
assert batch_size == 1,\
'Only support batch size == 1'
video = video.squeeze(1)
video = rearrange(video, "t c h w -> t h w c")
def make_frame(t):
frame_tensor = video[int(t * fps)]
frame_np = (frame_tensor * 255).numpy().astype('uint8')
return frame_np
clip = mpy.VideoClip(make_frame, duration=num_frames / fps)
clip.write_videofile(path, fps=fps, codec='libx264')
def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=6, fps=8):
videos = rearrange(videos, "b c t h w -> t b c h w")
outputs = []
for x in videos:
x = torchvision.utils.make_grid(x, nrow=n_rows)
x = x.transpose(0, 1).transpose(1, 2).squeeze(-1)
if rescale:
x = (x + 1.0) / 2.0 # -1,1 -> 0,1
x = torch.clamp((x * 255), 0, 255).numpy().astype(np.uint8)
outputs.append(x)
os.makedirs(os.path.dirname(path), exist_ok=True)
imageio.mimsave(path, outputs, fps=fps)
# DDIM Inversion
@torch.no_grad()
def init_prompt(prompt, pipeline):
uncond_input = pipeline.tokenizer(
[""], padding="max_length", max_length=pipeline.tokenizer.model_max_length,
return_tensors="pt"
)
uncond_embeddings = pipeline.text_encoder(uncond_input.input_ids.to(pipeline.device))[0]
text_input = pipeline.tokenizer(
[prompt],
padding="max_length",
max_length=pipeline.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_embeddings = pipeline.text_encoder(text_input.input_ids.to(pipeline.device))[0]
context = torch.cat([uncond_embeddings, text_embeddings])
return context
def next_step(model_output: Union[torch.FloatTensor, np.ndarray], timestep: int,
sample: Union[torch.FloatTensor, np.ndarray], ddim_scheduler):
timestep, next_timestep = min(
timestep - ddim_scheduler.config.num_train_timesteps // ddim_scheduler.num_inference_steps, 999), timestep
alpha_prod_t = ddim_scheduler.alphas_cumprod[timestep] if timestep >= 0 else ddim_scheduler.final_alpha_cumprod
alpha_prod_t_next = ddim_scheduler.alphas_cumprod[next_timestep]
beta_prod_t = 1 - alpha_prod_t
next_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
next_sample_direction = (1 - alpha_prod_t_next) ** 0.5 * model_output
next_sample = alpha_prod_t_next ** 0.5 * next_original_sample + next_sample_direction
return next_sample
def get_noise_pred_single(latents, t, context, unet):
noise_pred = unet(latents, t, encoder_hidden_states=context)["sample"]
return noise_pred
@torch.no_grad()
def ddim_loop(pipeline, ddim_scheduler, latent, num_inv_steps, prompt):
context = init_prompt(prompt, pipeline)
uncond_embeddings, cond_embeddings = context.chunk(2)
all_latent = [latent]
latent = latent.clone().detach()
for i in tqdm(range(num_inv_steps)):
t = ddim_scheduler.timesteps[len(ddim_scheduler.timesteps) - i - 1]
noise_pred = get_noise_pred_single(latent, t, cond_embeddings, pipeline.unet)
latent = next_step(noise_pred, t, latent, ddim_scheduler)
all_latent.append(latent)
return all_latent
@torch.no_grad()
def ddim_inversion(pipeline, ddim_scheduler, video_latent, num_inv_steps, prompt=""):
ddim_latents = ddim_loop(pipeline, ddim_scheduler, video_latent, num_inv_steps, prompt)
return ddim_latents
def prepare_mask_coef(video_length:int, cond_frame:int, sim_range:list=[0.2, 1.0]):
assert len(sim_range) == 2, \
'sim_range should has the length of 2, including the min and max similarity'
assert video_length > 1, \
'video_length should be greater than 1'
assert video_length > cond_frame,\
'video_length should be greater than cond_frame'
diff = abs(sim_range[0] - sim_range[1]) / (video_length - 1)
coef = [1.0] * video_length
for f in range(video_length):
f_diff = diff * abs(cond_frame - f)
f_diff = 1 - f_diff
coef[f] *= f_diff
return coef
def prepare_mask_coef_by_score(video_shape: list, cond_frame_idx: list, sim_range: list = [0.2, 1.0],
statistic: list = [1, 100], coef_max: int = 0.98, score: Optional[torch.Tensor] = None):
'''
the shape of video_data is (b f c h w)
cond_frame_idx is a list, with length of batch_size
the shape of statistic is (f 2)
the shape of score is (b f)
the shape of coef is (b f)
'''
assert len(video_shape) == 2, \
f'the shape of video_shape should be (b f c h w), but now get {len(video_shape.shape)} channels'
batch_size, frame_num = video_shape[0], video_shape[1]
score = score.permute(0, 2, 1).squeeze(0)
# list -> b 1
cond_fram_mat = torch.tensor(cond_frame_idx).unsqueeze(-1)
statistic = torch.tensor(statistic)
# (f 2) -> (b f 2)
statistic = statistic.repeat(batch_size, 1, 1)
# shape of order (b f), shape of cond_mat (b f)
order = torch.arange(0, frame_num, 1)
order = order.repeat(batch_size, 1)
cond_mat = torch.ones((batch_size, frame_num)) * cond_fram_mat
order = abs(order - cond_mat)
statistic = statistic[:,order.to(torch.long)][0,:,:,:]
# score (b f) max_s (b f 1)
max_stats = torch.max(statistic, dim=2).values.to(dtype=score.dtype)
min_stats = torch.min(statistic, dim=2).values.to(dtype=score.dtype)
score[score > max_stats] = max_stats[score > max_stats] * 0.95
score[score < min_stats] = min_stats[score < min_stats]
eps = 1e-10
coef = 1 - abs((score / (max_stats + eps)) * (max(sim_range) - min(sim_range)))
indices = torch.arange(coef.shape[0]).unsqueeze(1)
coef[indices, cond_fram_mat] = 1.0
return coef
def prepare_mask_coef_by_statistics(video_length: int, cond_frame: int, sim_range: int,
coef: Optional[list] = None):
"""
coef: User defined coef, if passed, `sim_range` index will be ignored. This is useful
for defining custom style transform coef for different models.
"""
assert video_length > 1, \
'video_length should be greater than 1'
assert video_length > cond_frame,\
'video_length should be greater than cond_frame'
# Recommend index: 13
# range_list = [
# # [0.8, 0.8, 0.7, 0.6],
# [1.0, 0.8, 0.7, 0.6],
# [1.0, 0.8, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.6, 0.5, 0.5],
# [1.0, 0.9, 0.85, 0.85, 0.85, 0.8], # 0
# [1.0, 0.9, 0.8, 0.7],
# [1.0, 0.8, 0.7, 0.6, 0.7, 0.6],
# [1.0, 0.9, 0.85],
# # [1.0, 0.9, 0.7, 0.5, 0.3, 0.2],
# # [1.0, 0.8, 0.6, 0.4],
# # [1.0, 0.65, 0.6], # 1
# [1.0, 0.6, 0.4], # 2
# [1.0, 0.2, 0.2],
# # [1.0, 0.8, 0.6, 0.6, 0.5, 0.5, 0.4],
# # [1.0, 0.9, 0.9, 0.9, 0.9, 0.8],
# # [1.0, 0.65, 0.6, 0.6, 0.5, 0.5, 0.4],
# # [1.0, 0.9, 0.9, 0.9, 0.7, 0.7, 0.6, 0.5, 0.4],
# [1.0, 0.8, 0.8, 0.8, 0.79, 0.78, 0.75], # 4 style_transfer
# [1.0, 0.9, 0.9],
# [0.8, 0.7, 0.6],
# [0.8, 0.8, 0.8, 0.8, 0.7],
# [0.9, 0.6, 0.6, 0.6, 0.5, 0.4, 0.2],
# # [1.0, 0.91, 0.9, 0.89, 0.88, 0.87],
# # [1.0, 0.7, 0.65, 0.65, 0.65, 0.65, 0.6],
# # [1.0, 0.85, 0.9, 0.85, 0.9, 0.85],
# # [1.0, 0.8, 0.82, 0.84, 0.86, 0.88, 0.78, 0.82, 0.84],
# # [1.0],
# ]
range_list = RANGE_LIST
assert sim_range < len(range_list),\
f'sim_range type{sim_range} not implemented'
if coef is None:
coef = range_list[sim_range]
coef = coef + ([coef[-1]] * (video_length - len(coef)))
order = [abs(i - cond_frame) for i in range(video_length)]
coef = [coef[order[i]] for i in range(video_length)]
return coef |