File size: 4,139 Bytes
cc5b602
6f619d7
d381360
6386510
51a7d9e
3eed0af
6386510
970d940
 
 
 
 
 
 
 
 
 
51a7d9e
e6367a7
6386510
bd34f0b
423ddc8
bd34f0b
 
51a7d9e
970d940
 
 
 
 
 
 
 
 
 
 
423ddc8
970d940
 
423ddc8
 
 
 
 
970d940
 
423ddc8
970d940
 
 
 
423ddc8
3eed0af
d381360
4ed884e
 
 
1d4c579
4ed884e
 
 
 
e59867b
 
f6667bb
 
 
 
 
 
 
 
 
 
423ddc8
3a65db9
 
 
423ddc8
 
 
e59867b
423ddc8
 
 
 
 
 
 
 
970d940
 
 
 
3a65db9
 
 
 
51a7d9e
 
 
3a65db9
 
f6667bb
9c028f0
8c5184e
e1fdb27
 
 
 
8c5184e
51a7d9e
 
 
 
 
 
1d4c579
51a7d9e
 
 
 
 
4ed884e
51a7d9e
 
b64165b
51a7d9e
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import os
import time
import spaces
import torch
import gradio as gr
from threading import Thread

from huggingface_hub import snapshot_download
from pathlib import Path

from mistral_inference.transformer import Transformer
from mistral_inference.generate import generate

from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
from mistral_common.protocol.instruct.messages import AssistantMessage, UserMessage
from mistral_common.protocol.instruct.request import ChatCompletionRequest

HF_TOKEN = os.environ.get("HF_TOKEN", None)

PLACEHOLDER = """
<center>
<p>Chat with Mistral AI LLM.</p>
</center>
"""

CSS = """
.duplicate-button {
    margin: auto !important;
    color: white !important;
    background: black !important;
    border-radius: 100vh !important;
}
h3 {
    text-align: center;
}
"""


# download model
mistral_models_path = Path.home().joinpath('mistral_models', '8B-Instruct')
mistral_models_path.mkdir(parents=True, exist_ok=True)

snapshot_download(repo_id="mistralai/Ministral-8B-Instruct-2410", allow_patterns=["params.json", "consolidated.safetensors", "tekken.json"], local_dir=mistral_models_path)

# tokenizer
device = "cuda" if torch.cuda.is_available() else "cpu" # for GPU usage or "cpu" for CPU usage
tokenizer = MistralTokenizer.from_file(f"{mistral_models_path}/tekken.json")
model = Transformer.from_folder(
    mistral_models_path,
    device=device,
    dtype=torch.bfloat16)


@spaces.GPU()
def stream_chat(
    message: str, 
    history: list, 
    temperature: float = 0.3, 
    max_new_tokens: int = 1024, 
):
    print(f'message: {message}')
    print(f'history: {history}')

    conversation = []
    # for prompt, answer in history:
    #     conversation.append(UserMessage(content=prompt))
    #     conversation.append(AssistantMessage(content=answer))
        
    for item in history:
        if item[role] == "user":
            conversation.append(UserMessage(content=item[content]))
        elif item[role] == "assistant":
            conversation.append(AssistantMessage(content=item[content]))
            
    conversation.append(UserMessage(content=message))
    
    print(f'history: {conversation}')
    
    completion_request = ChatCompletionRequest(messages=conversation)
    
    tokens = tokenizer.encode_chat_completion(completion_request).tokens
    
    out_tokens, _ = generate(
        [tokens], 
        model, 
        max_tokens=max_new_tokens, 
        temperature=temperature,
        eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id)
    
    result = tokenizer.instruct_tokenizer.tokenizer.decode(out_tokens[0])

    for i in range(len(result)):
        time.sleep(0.05)
        yield result[: i + 1]

chatbot = gr.Chatbot(height=600, placeholder=PLACEHOLDER)

with gr.Blocks(theme="citrus", css=CSS) as demo:
    gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
    gr.ChatInterface(
        fn=stream_chat,
        title="Mistral-lab",
        chatbot=chatbot,
        type="messages",
        fill_height=True,
        examples=[
            ["Help me study vocabulary: write a sentence for me to fill in the blank, and I'll try to pick the correct option."],
            ["What are 5 creative things I could do with my kids' art? I don't want to throw them away, but it's also so much clutter."],
            ["Tell me a random fun fact about the Roman Empire."],
            ["Show me a code snippet of a website's sticky header in CSS and JavaScript."],
        ],
        additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
        additional_inputs=[
            gr.Slider(
                minimum=0,
                maximum=1,
                step=0.1,
                value=0.3,
                label="Temperature",
                render=False,
            ),
            gr.Slider(
                minimum=128,
                maximum=8192,
                step=1,
                value=1024,
                label="Max new tokens",
                render=False,
            ),
        ],
    )


if __name__ == "__main__":
    demo.launch()