Spaces:
Sleeping
Sleeping
import os | |
import time | |
import spaces | |
import torch | |
import gradio as gr | |
from threading import Thread | |
from huggingface_hub import snapshot_download | |
from pathlib import Path | |
from mistral_inference.transformer import Transformer | |
from mistral_inference.generate import generate | |
from mistral_common.tokens.tokenizers.mistral import MistralTokenizer | |
from mistral_common.protocol.instruct.messages import AssistantMessage, UserMessage | |
from mistral_common.protocol.instruct.request import ChatCompletionRequest | |
HF_TOKEN = os.environ.get("HF_TOKEN", None) | |
TITLE = "<h1><center>Mistral-lab</center></h1>" | |
PLACEHOLDER = """ | |
<center> | |
<p>Chat with Mistral AI LLM.</p> | |
</center> | |
""" | |
CSS = """ | |
.duplicate-button { | |
margin: auto !important; | |
color: white !important; | |
background: black !important; | |
border-radius: 100vh !important; | |
} | |
h3 { | |
text-align: center; | |
} | |
""" | |
# download model | |
mistral_models_path = Path.home().joinpath('mistral_models', '8B-Instruct') | |
mistral_models_path.mkdir(parents=True, exist_ok=True) | |
snapshot_download(repo_id="mistralai/Ministral-8B-Instruct-2410", allow_patterns=["params.json", "consolidated.safetensors", "tekken.json"], local_dir=mistral_models_path) | |
# tokenizer | |
device = "cuda" if torch.cuda.is_available() else "cpu" # for GPU usage or "cpu" for CPU usage | |
tokenizer = MistralTokenizer.from_file(f"{mistral_models_path}/tekken.json") | |
model = Transformer.from_folder( | |
mistral_models_path, | |
device=device, | |
dtype=torch.bfloat16) | |
def stream_chat( | |
message: str, | |
history: list, | |
temperature: float = 0.3, | |
max_new_tokens: int = 1024, | |
): | |
print(f'message: {message}') | |
print(f'history: {history}') | |
conversation = [] | |
for prompt, answer in history: | |
conversation.append(UserMessage(content=prompt)) | |
conversation.append(AssistantMessage(content=answer)) | |
conversation.append(UserMessage(content=message)) | |
completion_request = ChatCompletionRequest(messages=conversation) | |
tokens = tokenizer.encode_chat_completion(completion_request).tokens | |
out_tokens, _ = generate( | |
[tokens], | |
model, | |
max_tokens=max_new_tokens, | |
temperature=temperature, | |
eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id) | |
result = tokenizer.instruct_tokenizer.tokenizer.decode(out_tokens[0]) | |
for i in range(len(result)): | |
time.sleep(0.05) | |
yield result[: i + 1] | |
chatbot = gr.Chatbot( | |
height=600, | |
placeholder=PLACEHOLDER, | |
examples=[ | |
{"text": "Help me study vocabulary: write a sentence for me to fill in the blank, and I'll try to pick the correct option."}, | |
{"text": "What are 5 creative things I could do with my kids' art? I don't want to throw them away, but it's also so much clutter."}, | |
{"text": "Tell me a random fun fact about the Roman Empire."}, | |
{"text": "Show me a code snippet of a website's sticky header in CSS and JavaScript."}, | |
], | |
) | |
with gr.Blocks(theme="ocean", css=CSS) as demo: | |
gr.HTML(TITLE) | |
gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button") | |
gr.ChatInterface( | |
fn=stream_chat, | |
chatbot=chatbot, | |
fill_height=True, | |
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False), | |
additional_inputs=[ | |
gr.Slider( | |
minimum=0, | |
maximum=1, | |
step=0.1, | |
value=0.3, | |
label="Temperature", | |
render=False, | |
), | |
gr.Slider( | |
minimum=128, | |
maximum=8192, | |
step=1, | |
value=1024, | |
label="Max new tokens", | |
render=False, | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |