File size: 4,220 Bytes
e648a4e
 
 
 
 
 
 
 
 
df95c95
 
 
 
 
 
 
e648a4e
 
 
96cf2e5
5d6831b
 
96cf2e5
e648a4e
 
 
0b3dcc4
 
 
 
 
e648a4e
 
3bf96ec
 
 
 
 
4486ad7
 
 
 
 
a5e1d16
4486ad7
 
3bf96ec
4486ad7
 
 
7966397
4486ad7
 
3bf96ec
 
a5e1d16
2aa58d4
 
3bf96ec
046526a
0b3dcc4
 
e648a4e
 
0b3dcc4
 
 
 
e648a4e
 
 
0b3dcc4
 
 
 
e648a4e
 
 
0b3dcc4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e648a4e
 
 
 
 
0b3dcc4
 
 
 
 
 
 
2aa58d4
0b3dcc4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e648a4e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
from __future__ import annotations
from typing import Iterable
import gradio as gr
from gradio.themes.base import Base
from gradio.themes.utils import colors, fonts, sizes

from llama_cpp import Llama
from huggingface_hub import hf_hub_download

import requests
from bs4 import BeautifulSoup

headers = {
	"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36"
}

hf_hub_download(repo_id="LLukas22/gpt4all-lora-quantized-ggjt", filename="ggjt-model.bin", local_dir=".")
llm = Llama(model_path="./ggjt-model.bin")

ins = '''### Instruction:
{question}
{data}
### Response:
'''

theme = gr.themes.Monochrome(
	primary_hue="purple",
	secondary_hue="red",
	neutral_hue="neutral",
	radius_size=gr.themes.sizes.radius_sm,
	font=[gr.themes.GoogleFont("Inter"), "ui-sans-serif", "system-ui", "sans-serif"],
)

def search_ddg(question: str):
	response = requests.get("https://duckduckgo.com/html/", headers=headers, params={"q": question})
	data = response.text
	soup = BeautifulSoup(data, "html.parser")

	result_texts = soup.find_all("a", class_="result__snippet")
	results: list[str] = []
	output_string: str = ""

	for element in result_texts:
		if len(results) < 1:
			text_content = element.get_text()
			results.append(text_content)
		else:
			continue

	for element in results:
		output_string += element + '\n\n'

	return output_string

def generate(instruction):
	feeding_data = search_ddg(instruction)
	prompt = ins.format(question=instruction, data=feeding_data)
	print(prompt)

	response = llm(prompt, stop=['### Instruction:', '### End'])
	result = response['choices'][0]['text']
	return result

examples = [
	"How do dogs bark?",
	"Why are apples red?",
	"How do I make a campfire?",
	"Why do cats love to chirp at something?"
]

def process_example(args):
	for x in generate(args):
		pass
	return x

css = ".generating {visibility: hidden}"

class PurpleTheme(Base):
	def __init__(
		self,
		*,
		primary_hue: colors.Color | str = colors.purple,
		secondary_hue: colors.Color | str = colors.red,
		neutral_hue: colors.Color | str = colors.neutral,
		spacing_size: sizes.Size | str = sizes.spacing_md,
		radius_size: sizes.Size | str = sizes.radius_md,
		font: fonts.Font
		| str
		| Iterable[fonts.Font | str] = (
			fonts.GoogleFont("Inter"),
			"ui-sans-serif",
			"sans-serif",
		),
		font_mono: fonts.Font
		| str
		| Iterable[fonts.Font | str] = (
			fonts.GoogleFont("Space Grotesk"),
			"ui-monospace",
			"monospace",
		),
	):
		super().__init__(
			primary_hue=primary_hue,
			secondary_hue=secondary_hue,
			neutral_hue=neutral_hue,
			spacing_size=spacing_size,
			radius_size=radius_size,
			font=font,
			font_mono=font_mono,
		)
		super().set(
			button_primary_background_fill="linear-gradient(90deg, *primary_300, *secondary_400)",
			button_primary_background_fill_hover="linear-gradient(90deg, *primary_200, *secondary_300)",
			button_primary_text_color="white",
			button_primary_background_fill_dark="linear-gradient(90deg, *primary_600, *secondary_800)",
			block_shadow="*shadow_drop_lg",
			button_shadow="*shadow_drop_lg",
			input_background_fill="zinc",
			input_border_color="*secondary_300",
			input_shadow="*shadow_drop",
			input_shadow_focus="*shadow_drop_lg",
		)


custom_theme = PurpleTheme()

with gr.Blocks(theme=custom_theme, analytics_enabled=False, css=css) as demo:
	with gr.Column():
		gr.Markdown(
			""" ## GPT4ALL

			7b quantized 4bit (q4_0)

			Type in the box below and click the button to generate answers to your most pressing questions!
	 """)

		with gr.Row():
			with gr.Column(scale=3):
				instruction = gr.Textbox(placeholder="Enter your question here", label="Question", elem_id="q-input")

				with gr.Box():
					gr.Markdown("**Answer**")
					output = gr.Markdown(elem_id="q-output")
				submit = gr.Button("Generate", variant="primary")
				gr.Examples(
					examples=examples,
					inputs=[instruction],
					cache_examples=False,
					fn=process_example,
					outputs=[output],
				)



	submit.click(generate, inputs=[instruction], outputs=[output])
	instruction.submit(generate, inputs=[instruction], outputs=[output])

demo.queue(concurrency_count=1).launch(debug=True)