Kajise Org
Update app.py
0b3dcc4
raw
history blame
5 kB
from __future__ import annotations
from typing import Iterable
import gradio as gr
from gradio.themes.base import Base
from gradio.themes.utils import colors, fonts, sizes
from llama_cpp import Llama
from huggingface_hub import hf_hub_download
hf_hub_download(repo_id="LLukas22/gpt4all-lora-quantized-ggjt", filename="ggjt-model.bin", local_dir=".")
llm = Llama(model_path="./ggjt-model.bin")
ins = '''
{}
also take this data and absorb your knowledge, you dont need use now what dont make sense, there will be noise, focus on what is repeated and adds knowledge
'''
import requests
from bs4 import BeautifulSoup
from SearchResult import SearchResult
headers = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36"
}
theme = gr.themes.Monochrome(
primary_hue="purple",
secondary_hue="red",
neutral_hue="neutral",
radius_size=gr.themes.sizes.radius_sm,
font=[gr.themes.GoogleFont("Inter"), "ui-sans-serif", "system-ui", "sans-serif"],
)
def search_ddg(question: str):
response = requests.get("https://duckduckgo.com/html/", headers=headers, params={"q": question})
data = response.text
soup = BeautifulSoup(data, "html.parser")
did_you_mean = soup.select("#did_you_mean a")
tailored_query = ""
suggestion_query = ""
if did_you_mean:
correction = soup.find(id="did_you_mean")
if correction:
correction_hyperlink = correction.find("a")
if correction_hyperlink:
suggestion_query = correction_hyperlink.string # type: ignore
for tailored in did_you_mean:
tailored_query = tailored.string
break
result_links = soup.find_all("a")
filtered_urls = [
link["href"]
for link in result_links
if link.get("href") and (link["href"].startswith("https://") or link["href"].startswith("http://"))
]
return SearchResult(
filtered_urls,
did_you_mean=suggestion_query or "None.",
tailored_query=tailored_query or "None.",
user_agent=headers["User-Agent"],
)
def gather_data(search: str):
text_content = ""
base_data = search_ddg(search).parse_results()
for data in base_data:
if data:
text_content += data.text_content + "\n\n"
else:
text_content += ""
return text_content
def generate(instruction):
base_prompt = ins.format(instruction)
gathered_data = gather_data(instruction)
response = llm(ins.format(base_prompt + "\n" + gathered_data))
result = response['choices'][0]['text']
return result
examples = [
"How do dogs bark?",
"Why are apples red?",
"How do I make a campfire?",
"Why do cats love to chirp at something?"
]
def process_example(args):
for x in generate(args):
pass
return x
css = ".generating {visibility: hidden}"
class PurpleTheme(Base):
def __init__(
self,
*,
primary_hue: colors.Color | str = colors.purple,
secondary_hue: colors.Color | str = colors.red,
neutral_hue: colors.Color | str = colors.neutral,
spacing_size: sizes.Size | str = sizes.spacing_md,
radius_size: sizes.Size | str = sizes.radius_md,
font: fonts.Font
| str
| Iterable[fonts.Font | str] = (
fonts.GoogleFont("Inter"),
"ui-sans-serif",
"sans-serif",
),
font_mono: fonts.Font
| str
| Iterable[fonts.Font | str] = (
fonts.GoogleFont("Space Grotesk"),
"ui-monospace",
"monospace",
),
):
super().__init__(
primary_hue=primary_hue,
secondary_hue=secondary_hue,
neutral_hue=neutral_hue,
spacing_size=spacing_size,
radius_size=radius_size,
font=font,
font_mono=font_mono,
)
super().set(
button_primary_background_fill="linear-gradient(90deg, *primary_300, *secondary_400)",
button_primary_background_fill_hover="linear-gradient(90deg, *primary_200, *secondary_300)",
button_primary_text_color="white",
button_primary_background_fill_dark="linear-gradient(90deg, *primary_600, *secondary_800)",
block_shadow="*shadow_drop_lg",
button_shadow="*shadow_drop_lg",
input_background_fill="zinc",
input_border_color="*secondary_300",
input_shadow="*shadow_drop",
input_shadow_focus="*shadow_drop_lg",
)
custom_theme = PurpleTheme()
with gr.Blocks(theme=custom_theme, analytics_enabled=False, css=css) as demo:
with gr.Column():
gr.Markdown(
""" ## GPT4ALL
7b quantized 4bit (q4_0)
Type in the box below and click the button to generate answers to your most pressing questions!
"""
)
with gr.Row():
with gr.Column(scale=3):
instruction = gr.Textbox(placeholder="Enter your question here", label="Question", elem_id="q-input")
with gr.Box():
gr.Markdown("**Answer**")
output = gr.Markdown(elem_id="q-output")
submit = gr.Button("Generate", variant="primary")
gr.Examples(
examples=examples,
inputs=[instruction],
cache_examples=False,
fn=process_example,
outputs=[output],
)
submit.click(generate, inputs=[instruction], outputs=[output])
instruction.submit(generate, inputs=[instruction], outputs=[output])
demo.queue(concurrency_count=1).launch(debug=True)