Spaces:
Sleeping
Sleeping
File size: 2,924 Bytes
15c8167 460930f 15c8167 460930f 15c8167 c2c9efa 460930f 15c8167 c2c9efa 15c8167 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
import json
import gradio as gr
import pandas as pd
from huggingface_hub import HfFileSystem
from src.constants import RESULTS_DATASET_ID, TASKS
def fetch_result_paths():
fs = HfFileSystem()
paths = fs.glob(f"{RESULTS_DATASET_ID}/**/**/*.json")
return paths
def filter_latest_result_path_per_model(paths):
from collections import defaultdict
d = defaultdict(list)
for path in paths:
model_id, _ = path[len(RESULTS_DATASET_ID) + 1:].rsplit("/", 1)
d[model_id].append(path)
return {model_id: max(paths) for model_id, paths in d.items()}
def update_load_results_component():
return gr.Button("Load Results", interactive=True)
def load_results_dataframe(model_id, result_path_per_model=None):
if not model_id or not result_path_per_model:
return
result_path = result_path_per_model[model_id]
fs = HfFileSystem()
with fs.open(result_path, "r") as f:
data = json.load(f)
model_name = data.get("model_name", "Model")
df = pd.json_normalize([{key: value for key, value in data.items()}])
# df.columns = df.columns.str.split(".") # .split return a list instead of a tuple
return df.set_index(pd.Index([model_name])).reset_index()
def load_results_dataframes(*model_ids, result_path_per_model=None):
return [load_results_dataframe(model_id, result_path_per_model=result_path_per_model) for model_id in model_ids]
def display_results(task, *dfs):
dfs = [df.set_index("index") for df in dfs if "index" in df.columns]
if not dfs:
return None, None
df = pd.concat(dfs)
df = df.T.rename_axis(columns=None)
return display_tab("results", df, task), display_tab("configs", df, task)
def display_tab(tab, df, task):
df = df.style.format(na_rep="")
df.hide(
[
row
for row in df.index
if (
not row.startswith(f"{tab}.")
or row.startswith(f"{tab}.leaderboard.")
or row.endswith(".alias")
or (not row.startswith(f"{tab}.{task}") if task != "All" else False)
)
],
axis="index",
)
start = len(f"{tab}.leaderboard_") if task == "All" else len(f"{tab}.{task} ")
df.format_index(lambda idx: idx[start:].removesuffix(",none"), axis="index")
return df.to_html()
def update_tasks_component():
return gr.Radio(
["All"] + list(TASKS.values()),
label="Tasks",
info="Evaluation tasks to be displayed",
value="All",
interactive=True,
)
def clear_results():
# model_id_1, model_id_2, dataframe_1, dataframe_2, task
return (
None, None, None, None,
gr.Radio(
["All"] + list(TASKS.values()),
label="Tasks",
info="Evaluation tasks to be displayed",
value="All",
interactive=False,
),
)
|