comparator / app.py
albertvillanova's picture
Optimize data loading and filter in display
6679087 verified
raw
history blame
5.61 kB
import io
import json
import gradio as gr
import pandas as pd
from huggingface_hub import HfFileSystem
RESULTS_DATASET_ID = "datasets/open-llm-leaderboard/results"
EXCLUDED_KEYS = {
"pretty_env_info",
"chat_template",
"group_subtasks",
}
# EXCLUDED_RESULTS_KEYS = {
# "leaderboard",
# }
# EXCLUDED_RESULTS_LEADERBOARDS_KEYS = {
# "alias",
# }
TASKS = {
"leaderboard_arc_challenge": ("ARC", "leaderboard_arc_challenge"),
"leaderboard_bbh": ("BBH", "leaderboard_bbh"),
"leaderboard_gpqa": ("GPQA", "leaderboard_gpqa"),
"leaderboard_ifeval": ("IFEval", "leaderboard_ifeval"),
"leaderboard_math_hard": ("MATH", "leaderboard_math"),
"leaderboard_mmlu_pro": ("MMLU-Pro", "leaderboard_mmlu_pro"),
"leaderboard_musr": ("MuSR", "leaderboard_musr"),
}
fs = HfFileSystem()
def fetch_result_paths():
paths = fs.glob(f"{RESULTS_DATASET_ID}/**/**/*.json")
return paths
def filter_latest_result_path_per_model(paths):
from collections import defaultdict
d = defaultdict(list)
for path in paths:
model_id, _ = path[len(RESULTS_DATASET_ID) +1:].rsplit("/", 1)
d[model_id].append(path)
return {model_id: max(paths) for model_id, paths in d.items()}
def get_result_path_from_model(model_id, result_path_per_model):
return result_path_per_model[model_id]
def load_data(result_path) -> pd.DataFrame:
with fs.open(result_path, "r") as f:
data = json.load(f)
return data
def load_result_dataframe(model_id):
result_path = get_result_path_from_model(model_id, latest_result_path_per_model)
data = load_data(result_path)
model_name = data.get("model_name", "Model")
df = pd.json_normalize([{key: value for key, value in data.items() if key not in EXCLUDED_KEYS}])
# df.columns = df.columns.str.split(".") # .split return a list instead of a tuple
return df.set_index(pd.Index([model_name])).reset_index()
def display_results(df_1, df_2, task):
df = pd.concat([df.set_index("index") for df in [df_1, df_2] if "index" in df.columns])
df = df.T.rename_axis(columns=None) # index="Parameters", # .reset_index()
# return display_dataframe(df)
# d = df.set_index(df.index.str.split(".")) # .split return a list instead of a tuple
# results = d.loc[d.index.str[0] == "results"]
# results.index = results.index.str.join(".")
# configs = d.loc[d.index.str[0] == "configs"]
# configs.index = configs.index.str.join(".")
# return display_dataframe(results), display_dataframe(configs)
return display_results_tab(df, task), display_configs_tab(df, task)
def display_results_tab(df, task):
df = df.style.format(na_rep="")
df.hide(
[
row
for row in df.index
if (
not row.startswith("results.")
or row.startswith("results.leaderboard.")
or row.endswith(".alias")
or (not row.startswith(f"results.{task}") if task != "All" else False)
)
],
axis="index",
)
df.format_index(lambda idx: idx[len("results.leaderboard_"):].removesuffix(",none"), axis="index")
return df.to_html()
def display_configs_tab(df, task):
df = df.style.format(na_rep="")
df.hide(
[
row
for row in df.index
if (
not row.startswith("configs.")
or row.startswith("configs.leaderboard.")
or row.endswith(".alias")
or (not row.startswith(f"configs.{task}") if task != "All" else False)
)
],
axis="index",
)
df.format_index(lambda idx: idx[len("configs.leaderboard_"):], axis="index")
return df.to_html()
# if __name__ == "__main__":
latest_result_path_per_model = filter_latest_result_path_per_model(fetch_result_paths())
with gr.Blocks(fill_height=True) as demo:
gr.HTML("<h1 style='text-align: center;'>Compare Results of the 🤗 Open LLM Leaderboard</h1>")
gr.HTML("<h3 style='text-align: center;'>Select 2 results to load and compare</h3>")
with gr.Row():
with gr.Column():
model_id_1 = gr.Dropdown(choices=list(latest_result_path_per_model.keys()), label="Results")
load_btn_1 = gr.Button("Load")
dataframe_1 = gr.Dataframe(visible=False)
with gr.Column():
model_id_2 = gr.Dropdown(choices=list(latest_result_path_per_model.keys()), label="Results")
load_btn_2 = gr.Button("Load")
dataframe_2 = gr.Dataframe(visible=False)
with gr.Row():
task = gr.Radio(
["All"] + list(TASKS.values()),
label="Tasks",
info="Evaluation tasks to be displayed",
value="All",
)
with gr.Row():
# with gr.Tab("All"):
# pass
with gr.Tab("Results"):
results = gr.HTML()
with gr.Tab("Configs"):
configs = gr.HTML()
load_btn_1.click(
fn=load_result_dataframe,
inputs=model_id_1,
outputs=dataframe_1,
).then(
fn=display_results,
inputs=[dataframe_1, dataframe_2, task],
outputs=[results, configs],
)
load_btn_2.click(
fn=load_result_dataframe,
inputs=model_id_2,
outputs=dataframe_2,
).then(
fn=display_results,
inputs=[dataframe_1, dataframe_2, task],
outputs=[results, configs],
)
task.change(
fn=display_results,
inputs=[dataframe_1, dataframe_2, task],
outputs=[results, configs],
)
demo.launch()