Spaces:
Sleeping
Sleeping
import io | |
import json | |
import gradio as gr | |
import pandas as pd | |
from huggingface_hub import HfFileSystem | |
RESULTS_DATASET_ID = "datasets/open-llm-leaderboard/results" | |
EXCLUDED_KEYS = { | |
"pretty_env_info", | |
"chat_template", | |
"group_subtasks", | |
} | |
# EXCLUDED_RESULTS_KEYS = { | |
# "leaderboard", | |
# } | |
# EXCLUDED_RESULTS_LEADERBOARDS_KEYS = { | |
# "alias", | |
# } | |
DETAILS_DATASET_ID = "datasets/open-llm-leaderboard/{model_name_sanitized}-details" | |
DETAILS_FILENAME = "samples_{subtask}_*.json" | |
TASKS = { | |
"leaderboard_arc_challenge": ("ARC", "leaderboard_arc_challenge"), | |
"leaderboard_bbh": ("BBH", "leaderboard_bbh"), | |
"leaderboard_gpqa": ("GPQA", "leaderboard_gpqa"), | |
"leaderboard_ifeval": ("IFEval", "leaderboard_ifeval"), | |
"leaderboard_math_hard": ("MATH", "leaderboard_math"), | |
"leaderboard_mmlu_pro": ("MMLU-Pro", "leaderboard_mmlu_pro"), | |
"leaderboard_musr": ("MuSR", "leaderboard_musr"), | |
} | |
SUBTASKS = { | |
"leaderboard_arc_challenge": ["leaderboard_arc_challenge"], | |
"leaderboard_bbh": [ | |
"leaderboard_bbh_boolean_expressions", | |
"leaderboard_bbh_causal_judgement", | |
"leaderboard_bbh_date_understanding", | |
"leaderboard_bbh_disambiguation_qa", | |
"leaderboard_bbh_formal_fallacies", | |
"leaderboard_bbh_geometric_shapes", | |
"leaderboard_bbh_hyperbaton", | |
"leaderboard_bbh_logical_deduction_five_objects", | |
"leaderboard_bbh_logical_deduction_seven_objects", | |
"leaderboard_bbh_logical_deduction_three_objects", | |
"leaderboard_bbh_movie_recommendation", | |
"leaderboard_bbh_navigate", | |
"leaderboard_bbh_object_counting", | |
"leaderboard_bbh_penguins_in_a_table", | |
"leaderboard_bbh_reasoning_about_colored_objects", | |
"leaderboard_bbh_ruin_names", | |
"leaderboard_bbh_salient_translation_error_detection", | |
"leaderboard_bbh_snarks", "leaderboard_bbh_sports_understanding", | |
"leaderboard_bbh_temporal_sequences", | |
"leaderboard_bbh_tracking_shuffled_objects_five_objects", | |
"leaderboard_bbh_tracking_shuffled_objects_seven_objects", | |
"leaderboard_bbh_tracking_shuffled_objects_three_objects", | |
"leaderboard_bbh_web_of_lies", | |
], | |
"leaderboard_gpqa": [ | |
"leaderboard_gpqa_extended", | |
"leaderboard_gpqa_diamond", | |
"leaderboard_gpqa_main", | |
], | |
"leaderboard_ifeval": ["leaderboard_ifeval"], | |
# "leaderboard_math_hard": [ | |
"leaderboard_math": [ | |
"leaderboard_math_algebra_hard", | |
"leaderboard_math_counting_and_prob_hard", | |
"leaderboard_math_geometry_hard", | |
"leaderboard_math_intermediate_algebra_hard", | |
"leaderboard_math_num_theory_hard", | |
"leaderboard_math_prealgebra_hard", | |
"leaderboard_math_precalculus_hard", | |
], | |
"leaderboard_mmlu_pro": ["leaderboard_mmlu_pro"], | |
"leaderboard_musr": [ | |
"leaderboard_musr_murder_mysteries", | |
"leaderboard_musr_object_placements", | |
"leaderboard_musr_team_allocation", | |
], | |
} | |
fs = HfFileSystem() | |
def fetch_result_paths(): | |
paths = fs.glob(f"{RESULTS_DATASET_ID}/**/**/*.json") | |
return paths | |
def filter_latest_result_path_per_model(paths): | |
from collections import defaultdict | |
d = defaultdict(list) | |
for path in paths: | |
model_id, _ = path[len(RESULTS_DATASET_ID) +1:].rsplit("/", 1) | |
d[model_id].append(path) | |
return {model_id: max(paths) for model_id, paths in d.items()} | |
def get_result_path_from_model(model_id, result_path_per_model): | |
return result_path_per_model[model_id] | |
def update_load_results_component(): | |
return gr.Button("Load Results", interactive=True) | |
def load_data(result_path) -> pd.DataFrame: | |
with fs.open(result_path, "r") as f: | |
data = json.load(f) | |
return data | |
def load_results_dataframe(model_id): | |
if not model_id: | |
return | |
result_path = get_result_path_from_model(model_id, latest_result_path_per_model) | |
data = load_data(result_path) | |
model_name = data.get("model_name", "Model") | |
df = pd.json_normalize([{key: value for key, value in data.items() if key not in EXCLUDED_KEYS}]) | |
# df.columns = df.columns.str.split(".") # .split return a list instead of a tuple | |
return df.set_index(pd.Index([model_name])).reset_index() | |
def display_results(df_1, df_2, task): | |
df = pd.concat([df.set_index("index") for df in [df_1, df_2] if "index" in df.columns]) | |
df = df.T.rename_axis(columns=None) | |
return display_tab("results", df, task), display_tab("configs", df, task) | |
def display_tab(tab, df, task): | |
df = df.style.format(na_rep="") | |
df.hide( | |
[ | |
row | |
for row in df.index | |
if ( | |
not row.startswith(f"{tab}.") | |
or row.startswith(f"{tab}.leaderboard.") | |
or row.endswith(".alias") | |
or (not row.startswith(f"{tab}.{task}") if task != "All" else False) | |
) | |
], | |
axis="index", | |
) | |
start = len(f"{tab}.leaderboard_") if task == "All" else len(f"{tab}.{task} ") | |
df.format_index(lambda idx: idx[start:].removesuffix(",none"), axis="index") | |
return df.to_html() | |
def update_tasks_component(): | |
return gr.Radio( | |
["All"] + list(TASKS.values()), | |
label="Tasks", | |
info="Evaluation tasks to be displayed", | |
value="All", | |
interactive=True, | |
) | |
def update_subtasks_component(task): | |
return gr.Radio( | |
SUBTASKS.get(task), | |
info="Evaluation subtasks to be displayed", | |
value=None, | |
) | |
def update_load_details_component(model_id_1, model_id_2, subtask): | |
if (model_id_1 or model_id_2) and subtask: | |
return gr.Button("Load Details", interactive=True) | |
else: | |
return gr.Button("Load Details", interactive=False) | |
def load_details_dataframe(model_id, subtask): | |
if not model_id or not subtask: | |
return | |
model_name_sanitized = model_id.replace("/", "__") | |
paths = fs.glob( | |
f"{DETAILS_DATASET_ID}/**/{DETAILS_FILENAME}".format( | |
model_name_sanitized=model_name_sanitized, subtask=subtask | |
) | |
) | |
if not paths: | |
return | |
path = max(paths) | |
with fs.open(path, "r") as f: | |
data = [json.loads(line) for line in f] | |
df = pd.json_normalize(data) | |
# df = df.rename_axis("Parameters", axis="columns") | |
df["model_name"] = model_id # Keep model_name | |
return df | |
# return df.set_index(pd.Index([model_id])).reset_index() | |
def display_details(df_1, df_2, sample_idx): | |
s_1 = df_1.iloc[sample_idx] | |
s_2 = df_2.iloc[sample_idx] | |
# Pop model_name and add it to the column name | |
s_1 = s_1.rename(s_1.pop("model_name")) | |
s_2 = s_2.rename(s_2.pop("model_name")) | |
df = pd.concat([s_1, s_2], axis="columns")#.rename_axis("Parameters").reset_index() | |
return ( | |
df.style | |
.format(na_rep="") | |
# .hide(axis="index") | |
.to_html() | |
) | |
# if __name__ == "__main__": | |
latest_result_path_per_model = filter_latest_result_path_per_model(fetch_result_paths()) | |
with gr.Blocks(fill_height=True) as demo: | |
gr.HTML("<h1 style='text-align: center;'>Compare Results of the 🤗 Open LLM Leaderboard</h1>") | |
gr.HTML("<h3 style='text-align: center;'>Select 2 models to load and compare their results</h3>") | |
with gr.Row(): | |
with gr.Column(): | |
model_id_1 = gr.Dropdown(choices=list(latest_result_path_per_model.keys()), label="Models") | |
dataframe_1 = gr.Dataframe(visible=False) | |
with gr.Column(): | |
model_id_2 = gr.Dropdown(choices=list(latest_result_path_per_model.keys()), label="Models") | |
dataframe_2 = gr.Dataframe(visible=False) | |
with gr.Row(): | |
# with gr.Tab("All"): | |
# pass | |
with gr.Tab("Results"): | |
task = gr.Radio( | |
["All"] + list(TASKS.values()), | |
label="Tasks", | |
info="Evaluation tasks to be displayed", | |
value="All", | |
interactive=False, | |
) | |
load_results_btn = gr.Button("Load Results", interactive=False) | |
with gr.Tab("Results"): | |
results = gr.HTML() | |
with gr.Tab("Configs"): | |
configs = gr.HTML() | |
with gr.Tab("Details"): | |
details_task = gr.Radio( | |
["All"] + list(TASKS.values()), | |
label="Tasks", | |
info="Evaluation tasks to be displayed", | |
value="All", | |
interactive=True, | |
) | |
subtask = gr.Radio( | |
SUBTASKS.get(details_task.value), | |
label="Subtasks", | |
info="Evaluation subtasks to be displayed (choose one of the Tasks above)", | |
) | |
sample_idx = gr.Number(value=0, label="Sample Index", info="Index of the sample to be displayed", minimum=0) | |
load_details_btn = gr.Button("Load Details", interactive=False) | |
details = gr.HTML() | |
details_dataframe_1 = gr.Dataframe(visible=False) | |
details_dataframe_2 = gr.Dataframe(visible=False) | |
details_dataframe = gr.DataFrame(visible=False) | |
model_id_1.change( | |
fn=update_load_results_component, | |
outputs=load_results_btn, | |
) | |
load_results_btn.click( | |
fn=load_results_dataframe, | |
inputs=model_id_1, | |
outputs=dataframe_1, | |
).then( | |
fn=load_results_dataframe, | |
inputs=model_id_2, | |
outputs=dataframe_2, | |
).then( | |
fn=display_results, | |
inputs=[dataframe_1, dataframe_2, task], | |
outputs=[results, configs], | |
).then( | |
fn=update_tasks_component, | |
outputs=task, | |
) | |
task.change( | |
fn=display_results, | |
inputs=[dataframe_1, dataframe_2, task], | |
outputs=[results, configs], | |
) | |
details_task.change( | |
fn=update_subtasks_component, | |
inputs=details_task, | |
outputs=subtask, | |
) | |
gr.on( | |
triggers=[model_id_1.change, model_id_2.change, subtask.change, details_task.change], | |
fn=update_load_details_component, | |
inputs=[model_id_1, model_id_2, subtask], | |
outputs=load_details_btn, | |
) | |
load_details_btn.click( | |
fn=load_details_dataframe, | |
inputs=[model_id_1, subtask], | |
outputs=details_dataframe_1, | |
).then( | |
fn=load_details_dataframe, | |
inputs=[model_id_2, subtask], | |
outputs=details_dataframe_2, | |
).then( | |
fn=display_details, | |
inputs=[details_dataframe_1, details_dataframe_2, sample_idx], | |
outputs=details, | |
) | |
sample_idx.change( | |
fn=display_details, | |
inputs=[details_dataframe_1, details_dataframe_2, sample_idx], | |
outputs=details, | |
) | |
demo.launch() | |