Spaces:
Build error
Build error
File size: 8,423 Bytes
edebe10 f53de7a edebe10 3dbd97b f53de7a de9f0d6 edebe10 de9f0d6 f53de7a edebe10 de9f0d6 c088993 de9f0d6 edebe10 de9f0d6 edebe10 de9f0d6 edebe10 de9f0d6 edebe10 de9f0d6 edebe10 de9f0d6 edebe10 de9f0d6 edebe10 de9f0d6 edebe10 de9f0d6 edebe10 de9f0d6 edebe10 de9f0d6 edebe10 de9f0d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
# Imports standard
import torch
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
import gradio as gr
import os
import subprocess
import sys
# Installation des dépendances nécessaires
subprocess.run(['apt-get', 'update'], check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
packages = ['openmpi-bin', 'libopenmpi-dev']
command = ['apt-get', 'install', '-y'] + packages
subprocess.run(command, check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
subprocess.check_call([sys.executable, '-m', 'pip', 'install', 'mpi4py'])
subprocess.check_call([sys.executable, '-m', 'pip', 'install', 'pydicom'])
subprocess.check_call([sys.executable, '-m', 'pip', 'install', 'SimpleITK'])
# Imports Hugging Face
from huggingface_hub import hf_hub_download, login
import spaces
# Imports locaux
from modeling.BaseModel import BaseModel
from modeling import build_model
from utilities.distributed import init_distributed
from utilities.arguments import load_opt_from_config_files
from utilities.constants import BIOMED_CLASSES
from inference_utils.inference import interactive_infer_image
from inference_utils.output_processing import check_mask_stats
from inference_utils.processing_utils import read_rgb, get_instances
def init_huggingface():
"""Initialize Hugging Face connection and download the model."""
hf_token = os.getenv('HF_TOKEN')
if hf_token is None:
raise ValueError("Hugging Face token not found. Please set the HF_TOKEN environment variable.")
login(hf_token)
pretrained_path = hf_hub_download(
repo_id="microsoft/BiomedParse",
filename="biomedparse_v1.pt",
local_dir="pretrained"
)
return pretrained_path
def apply_distributed(opt):
"""Applique les paramètres distribués pour le mode multi-processus."""
print(f"Configuration distribuée appliquée : {opt}")
def init_distributed(opt):
"""Initialize distributed mode without premature CUDA initialization."""
opt['CUDA'] = opt.get('CUDA', True) and torch.cuda.is_available()
if 'OMPI_COMM_WORLD_SIZE' not in os.environ:
# Application started without MPI
opt['env_info'] = 'no MPI'
opt['world_size'] = 1
opt['local_size'] = 1
opt['rank'] = 0
opt['local_rank'] = 0 # Ensure this is set to 0
opt['master_address'] = '127.0.0.1'
opt['master_port'] = '8673'
else:
# Application started with MPI
opt['world_size'] = int(os.environ['OMPI_COMM_WORLD_SIZE'])
opt['local_size'] = int(os.environ['OMPI_COMM_WORLD_LOCAL_SIZE'])
opt['rank'] = int(os.environ['OMPI_COMM_WORLD_RANK'])
opt['local_rank'] = int(os.environ['OMPI_COMM_WORLD_LOCAL_RANK'])
if not opt['CUDA']:
assert opt['world_size'] == 1, 'Multi-GPU training without CUDA is not supported since we use NCCL as communication backend'
opt['device'] = torch.device("cpu")
else:
opt['device'] = torch.device("cuda", opt['local_rank']) # Ensure local_rank is integer
apply_distributed(opt)
return opt
def setup_model():
"""Initialize the model on CPU without CUDA initialization."""
opt = load_opt_from_config_files(["configs/biomedparse_inference.yaml"])
opt = init_distributed(opt)
opt['device'] = 'cpu'
pretrained_path = init_huggingface()
model = BaseModel(opt, build_model(opt))
state_dict = torch.load(pretrained_path, map_location='cpu', weights_only=True)
model.load_state_dict(state_dict, strict=False)
# Initialize train_class_names
model.train_class_names = BIOMED_CLASSES + ["background"]
return model.eval()
import numpy as np
from PIL import Image
def preprocess_image(image):
"""Preprocess image for SEEM model input."""
if isinstance(image, Image.Image):
# Convert PIL Image to numpy array
image = np.array(image)
# Ensure image is float32 and normalized
image = image.astype(np.float32) / 255.0
# Ensure correct dimensions (B, C, H, W)
if len(image.shape) == 3:
image = np.transpose(image, (2, 0, 1)) # HWC -> CHW
image = np.expand_dims(image, axis=0) # Add batch dimension
return image
@spaces.GPU
def predict_image(model, image, prompts):
"""Process image prediction with proper formatting."""
try:
# Convert PIL Image to numpy array if needed
if isinstance(image, Image.Image):
image = np.array(image)
# Ensure image is in float32 and normalized
image = image.astype(np.float32) / 255.0
# Transpose from HWC to CHW format
if len(image.shape) == 3:
image = np.transpose(image, (2, 0, 1))
# Add batch dimension if needed
if len(image.shape) == 3:
image = np.expand_dims(image, axis=0)
# Convert to tensor
image_tensor = torch.from_numpy(image)
# Move to GPU if available
if torch.cuda.is_available():
device = torch.device("cuda", 0)
model = model.to(device)
image_tensor = image_tensor.to(device)
else:
device = torch.device("cpu")
# Create batched input
batched_inputs = [{
"image": image_tensor,
"prompt": prompts,
"height": image_tensor.shape[-2],
"width": image_tensor.shape[-1]
}]
with torch.no_grad():
pred_masks = model(batched_inputs)
# Move back to CPU if needed
if device.type == "cuda":
model = model.to("cpu")
pred_masks = [mask.cpu() for mask in pred_masks]
return pred_masks
except Exception as e:
print(f"Error processing image: {str(e)}")
raise
def process_image(image, text, model):
"""Process image with proper error handling."""
try:
prompts = [p.strip() for p in text.split(',') if p.strip()]
if not prompts:
raise ValueError("No valid prompts provided")
pred_masks = predict_image(model, image, prompts)
# Create visualization
fig = plt.figure(figsize=(5 * (len(pred_masks) + 1), 5))
# Show original image
plt.subplot(1, len(pred_masks) + 1, 1)
plt.imshow(preprocess_image(image))
plt.title("Original")
plt.axis('off')
# Show predictions
for i, mask in enumerate(pred_masks):
plt.subplot(1, len(pred_masks) + 1, i+2)
plt.imshow(preprocess_image(image))
plt.imshow(mask.cpu().numpy(), alpha=0.5, cmap='Reds')
plt.title(prompts[i])
plt.axis('off')
return fig
except Exception as e:
print(f"Error in process_image: {str(e)}")
raise
def setup_gradio_interface(model):
"""Configure l'interface Gradio."""
return gr.Interface(
fn=lambda img, txt: process_image(img, txt, model),
inputs=[
gr.Image(type="numpy", label="Image médicale"),
gr.Textbox(
label="Prompts (séparés par des virgules)",
placeholder="edema, lesion, etc...",
elem_classes="white"
)
],
outputs=gr.Plot(),
title="Core IA - Traitement d'image medicale",
description="Chargez une image médicale et spécifiez les éléments à segmenter",
examples=[
["examples/144DME_as_F.jpeg", "Dans cette image donne moi l'œdème"],
["examples/T0011.jpg", "disque optique, cupule optique"],
["examples/C3_EndoCV2021_00462.jpg", "Trouve moi le polyp"],
["examples/covid_1585.png", "Qu'est ce qui ne va pas ici ?"],
['examples/Part_1_516_pathology_breast.png', "cellules néoplasiques , cellules inflammatoires , cellules du tissu conjonctif"]
]
)
def main():
"""Entry point avoiding CUDA initialization in main process."""
try:
init_huggingface()
model = setup_model() # Load on CPU
interface = setup_gradio_interface(model)
interface.launch(debug=True)
except Exception as e:
print(f"Error during initialization: {str(e)}")
raise
if __name__ == "__main__":
main()
|