from transformers import pipeline import gradio as gr model_id = "Lightmourne/distilhubert-finetuned-gtzan" pipe = pipeline("audio-classification", model=model_id) def classify_audio(filepath): preds = pipe(filepath) outputs = {} for p in preds: outputs[p["label"]] = p["score"] return outputs demo = gr.Blocks() title = "Simple music genre classifier" description = """ A simple music genre classifier allows you to categorize a music track into one of ten music genres, such as: "blues", "classical", "country", "disco", "hiphop", "jazz", "metal", "pop", "reggae", "rock". Link to the fine-tuned model checkpoint: https://huggingface.co/Lightmourne/distilhubert-finetuned-gtzan """ mic_classify_audio = gr.Interface( fn=classify_audio, inputs=gr.Audio(source="microphone", type="filepath"), outputs=gr.outputs.Label(), title=title, description=description, ) file_classify_audio = gr.Interface( fn=classify_audio, inputs=gr.Audio(source="upload", type="filepath"), outputs=gr.outputs.Label(), #examples=[["./example.wav"]], title=title, description=description, ) with demo: gr.TabbedInterface([mic_classify_audio, file_classify_audio], ["Microphone", "Audio File"]) demo.launch(debug=True)