Spaces:
Running
on
A100
Running
on
A100
File size: 12,196 Bytes
86b1a7e d504563 86b1a7e e46ff5e bebbcd0 e46ff5e 4535a03 4bb89c5 86b1a7e b6c994f 325137b e46ff5e b6c994f e46ff5e 325137b e46ff5e 85a3cf8 e46ff5e 325137b e46ff5e b6c994f e46ff5e 85a3cf8 e46ff5e 325137b e46ff5e 325137b 4535a03 325137b 4535a03 325137b 4535a03 325137b b6c994f 4535a03 b6c994f 4535a03 4bb89c5 4535a03 325137b 4535a03 325137b e46ff5e 325137b 4535a03 325137b b6c994f 325137b 4535a03 325137b b6c994f 325137b b6c994f 325137b 4535a03 6a9d9a1 4535a03 325137b b6c994f 4535a03 e46ff5e b6c994f 39316ac b6c994f e46ff5e 4535a03 325137b e46ff5e 325137b 85a3cf8 325137b e46ff5e 6a9d9a1 e46ff5e 4535a03 e46ff5e 4535a03 e46ff5e 85a3cf8 4535a03 325137b 4535a03 e46ff5e 4bb89c5 85a3cf8 c042515 e46ff5e 4535a03 e46ff5e b6c994f 4535a03 e46ff5e b6c994f e46ff5e 325137b 4535a03 325137b 4bb89c5 325137b 4bb89c5 4535a03 e493629 4535a03 b6c994f 4535a03 e46ff5e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 |
import torch
from xora.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder
from xora.models.transformers.transformer3d import Transformer3DModel
from xora.models.transformers.symmetric_patchifier import SymmetricPatchifier
from xora.schedulers.rf import RectifiedFlowScheduler
from xora.pipelines.pipeline_xora_video import XoraVideoPipeline
from pathlib import Path
from transformers import T5EncoderModel, T5Tokenizer
import safetensors.torch
import json
import argparse
from xora.utils.conditioning_method import ConditioningMethod
import os
import numpy as np
import cv2
from PIL import Image
import random
RECOMMENDED_RESOLUTIONS = [
(704, 1216, 41),
(704, 1088, 49),
(640, 1056, 57),
(608, 992, 65),
(608, 896, 73),
(544, 896, 81),
(544, 832, 89),
(512, 800, 97),
(512, 768, 97),
(480, 800, 105),
(480, 736, 113),
(480, 704, 121),
(448, 704, 129),
(448, 672, 137),
(416, 640, 153),
(384, 672, 161),
(384, 640, 169),
(384, 608, 177),
(384, 576, 185),
(352, 608, 193),
(352, 576, 201),
(352, 544, 209),
(352, 512, 225),
(352, 512, 233),
(320, 544, 241),
(320, 512, 249),
(320, 512, 257),
]
def load_vae(vae_dir):
vae_ckpt_path = vae_dir / "vae_diffusion_pytorch_model.safetensors"
vae_config_path = vae_dir / "config.json"
with open(vae_config_path, "r") as f:
vae_config = json.load(f)
vae = CausalVideoAutoencoder.from_config(vae_config)
vae_state_dict = safetensors.torch.load_file(vae_ckpt_path)
vae.load_state_dict(vae_state_dict)
if torch.cuda.is_available():
vae = vae.cuda()
return vae.to(torch.bfloat16)
def load_unet(unet_dir):
unet_ckpt_path = unet_dir / "unet_diffusion_pytorch_model.safetensors"
unet_config_path = unet_dir / "config.json"
transformer_config = Transformer3DModel.load_config(unet_config_path)
transformer = Transformer3DModel.from_config(transformer_config)
unet_state_dict = safetensors.torch.load_file(unet_ckpt_path)
transformer.load_state_dict(unet_state_dict, strict=True)
if torch.cuda.is_available():
transformer = transformer.cuda()
return transformer
def load_scheduler(scheduler_dir):
scheduler_config_path = scheduler_dir / "scheduler_config.json"
scheduler_config = RectifiedFlowScheduler.load_config(scheduler_config_path)
return RectifiedFlowScheduler.from_config(scheduler_config)
def center_crop_and_resize(frame, target_height, target_width):
h, w, _ = frame.shape
aspect_ratio_target = target_width / target_height
aspect_ratio_frame = w / h
if aspect_ratio_frame > aspect_ratio_target:
new_width = int(h * aspect_ratio_target)
x_start = (w - new_width) // 2
frame_cropped = frame[:, x_start : x_start + new_width]
else:
new_height = int(w / aspect_ratio_target)
y_start = (h - new_height) // 2
frame_cropped = frame[y_start : y_start + new_height, :]
frame_resized = cv2.resize(frame_cropped, (target_width, target_height))
return frame_resized
def load_video_to_tensor_with_resize(video_path, target_height, target_width):
cap = cv2.VideoCapture(video_path)
frames = []
while True:
ret, frame = cap.read()
if not ret:
break
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
if target_height is not None:
frame_resized = center_crop_and_resize(
frame_rgb, target_height, target_width
)
else:
frame_resized = frame_rgb
frames.append(frame_resized)
cap.release()
video_np = (np.array(frames) / 127.5) - 1.0
video_tensor = torch.tensor(video_np).permute(3, 0, 1, 2).float()
return video_tensor
def load_image_to_tensor_with_resize(image_path, target_height=512, target_width=768):
image = Image.open(image_path).convert("RGB")
image_np = np.array(image)
frame_resized = center_crop_and_resize(image_np, target_height, target_width)
frame_tensor = torch.tensor(frame_resized).permute(2, 0, 1).float()
frame_tensor = (frame_tensor / 127.5) - 1.0
# Create 5D tensor: (batch_size=1, channels=3, num_frames=1, height, width)
return frame_tensor.unsqueeze(0).unsqueeze(2)
def main():
parser = argparse.ArgumentParser(
description="Load models from separate directories and run the pipeline."
)
# Directories
parser.add_argument(
"--ckpt_dir",
type=str,
required=True,
help="Path to the directory containing unet, vae, and scheduler subdirectories",
)
parser.add_argument(
"--input_video_path",
type=str,
help="Path to the input video file (first frame used)",
)
parser.add_argument(
"--input_image_path", type=str, help="Path to the input image file"
)
parser.add_argument(
"--output_path",
type=str,
default=None,
help="Path to save output video, if None will save in working directory.",
)
parser.add_argument("--seed", type=int, default="171198")
# Pipeline parameters
parser.add_argument(
"--num_inference_steps", type=int, default=40, help="Number of inference steps"
)
parser.add_argument(
"--num_images_per_prompt",
type=int,
default=1,
help="Number of images per prompt",
)
parser.add_argument(
"--guidance_scale",
type=float,
default=3,
help="Guidance scale for the pipeline",
)
parser.add_argument(
"--height",
type=int,
default=None,
help="Height of the output video frames. Optional if an input image provided.",
)
parser.add_argument(
"--width",
type=int,
default=None,
help="Width of the output video frames. If None will infer from input image.",
)
parser.add_argument(
"--num_frames",
type=int,
default=121,
help="Number of frames to generate in the output video",
)
parser.add_argument(
"--frame_rate", type=int, default=25, help="Frame rate for the output video"
)
parser.add_argument(
"--bfloat16",
action="store_true",
help="Denoise in bfloat16",
)
# Prompts
parser.add_argument(
"--prompt",
type=str,
help="Text prompt to guide generation",
)
parser.add_argument(
"--negative_prompt",
type=str,
default="worst quality, inconsistent motion, blurry, jittery, distorted",
help="Negative prompt for undesired features",
)
parser.add_argument(
"--custom_resolution",
action="store_true",
default=False,
help="Enable custom resolution (not in recommneded resolutions) if specified (default: False)",
)
args = parser.parse_args()
if args.input_image_path is None and args.input_video_path is None:
assert (
args.height is not None and args.width is not None
), "Must enter height and width for text to image generation."
# Load media (video or image)
if args.input_video_path:
media_items = load_video_to_tensor_with_resize(
args.input_video_path, args.height, args.width
).unsqueeze(0)
elif args.input_image_path:
media_items = load_image_to_tensor_with_resize(
args.input_image_path, args.height, args.width
)
else:
media_items = None
height = args.height if args.height else media_items.shape[-2]
width = args.width if args.width else media_items.shape[-1]
assert height % 32 == 0, f"Height ({height}) should be divisible by 32."
assert width % 32 == 0, f"Width ({width}) should be divisible by 32."
assert (
height,
width,
args.num_frames,
) in RECOMMENDED_RESOLUTIONS or args.custom_resolution, f"The selected resolution + num frames combination is not supported, results would be suboptimal. Supported (h,w,f) are: {RECOMMENDED_RESOLUTIONS}. Use --custom_resolution to enable working with this resolution."
# Paths for the separate mode directories
ckpt_dir = Path(args.ckpt_dir)
unet_dir = ckpt_dir / "unet"
vae_dir = ckpt_dir / "vae"
scheduler_dir = ckpt_dir / "scheduler"
# Load models
vae = load_vae(vae_dir)
unet = load_unet(unet_dir)
scheduler = load_scheduler(scheduler_dir)
patchifier = SymmetricPatchifier(patch_size=1)
text_encoder = T5EncoderModel.from_pretrained(
"PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="text_encoder"
)
if torch.cuda.is_available():
text_encoder = text_encoder.to("cuda")
tokenizer = T5Tokenizer.from_pretrained(
"PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="tokenizer"
)
if args.bfloat16 and unet.dtype != torch.bfloat16:
unet = unet.to(torch.bfloat16)
# Use submodels for the pipeline
submodel_dict = {
"transformer": unet,
"patchifier": patchifier,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"scheduler": scheduler,
"vae": vae,
}
pipeline = XoraVideoPipeline(**submodel_dict)
if torch.cuda.is_available():
pipeline = pipeline.to("cuda")
# Prepare input for the pipeline
sample = {
"prompt": args.prompt,
"prompt_attention_mask": None,
"negative_prompt": args.negative_prompt,
"negative_prompt_attention_mask": None,
"media_items": media_items,
}
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(args.seed)
generator = torch.Generator(
device="cuda" if torch.cuda.is_available() else "cpu"
).manual_seed(args.seed)
images = pipeline(
num_inference_steps=args.num_inference_steps,
num_images_per_prompt=args.num_images_per_prompt,
guidance_scale=args.guidance_scale,
generator=generator,
output_type="pt",
callback_on_step_end=None,
height=height,
width=width,
num_frames=args.num_frames,
frame_rate=args.frame_rate,
**sample,
is_video=True,
vae_per_channel_normalize=True,
conditioning_method=(
ConditioningMethod.FIRST_FRAME
if media_items is not None
else ConditioningMethod.UNCONDITIONAL
),
mixed_precision=not args.bfloat16,
).images
# Save output video
def get_unique_filename(base, ext, dir=".", index_range=1000):
for i in range(index_range):
filename = os.path.join(dir, f"{base}_{i}{ext}")
if not os.path.exists(filename):
return filename
raise FileExistsError(
f"Could not find a unique filename after {index_range} attempts."
)
for i in range(images.shape[0]):
# Gathering from B, C, F, H, W to C, F, H, W and then permuting to F, H, W, C
video_np = images[i].permute(1, 2, 3, 0).cpu().float().numpy()
# Unnormalizing images to [0, 255] range
video_np = (video_np * 255).astype(np.uint8)
fps = args.frame_rate
height, width = video_np.shape[1:3]
if video_np.shape[0] == 1:
output_filename = (
args.output_path
if args.output_path is not None
else get_unique_filename(f"image_output_{i}", ".png", ".")
)
cv2.imwrite(
output_filename, video_np[0][..., ::-1]
) # Save single frame as image
else:
output_filename = (
args.output_path
if args.output_path is not None
else get_unique_filename(f"video_output_{i}", ".mp4", ".")
)
out = cv2.VideoWriter(
output_filename, cv2.VideoWriter_fourcc(*"mp4v"), fps, (width, height)
)
for frame in video_np[..., ::-1]:
out.write(frame)
out.release()
if __name__ == "__main__":
main()
|