Spaces:
Running
on
A100
Running
on
A100
import torch | |
from vae.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder | |
from transformer.transformer3d import Transformer3DModel | |
from patchify.symmetric import SymmetricPatchifier | |
from scheduler.rf import RectifiedFlowScheduler | |
from pipeline.pipeline_video_pixart_alpha import VideoPixArtAlphaPipeline | |
from pathlib import Path | |
from transformers import T5EncoderModel | |
model_name_or_path = "PixArt-alpha/PixArt-XL-2-1024-MS" | |
vae_local_path = Path("/opt/models/checkpoints/vae_training/causal_vvae_32x32x8_420m_cont_32/step_2296000") | |
dtype = torch.float32 | |
vae = CausalVideoAutoencoder.from_pretrained( | |
pretrained_model_name_or_path=vae_local_path, | |
revision=False, | |
torch_dtype=torch.bfloat16, | |
load_in_8bit=False, | |
).cuda() | |
transformer_config_path = Path("/opt/txt2img/txt2img/config/transformer3d/xora_v1.2-L.json") | |
transformer_config = Transformer3DModel.load_config(transformer_config_path) | |
transformer = Transformer3DModel.from_config(transformer_config) | |
transformer_local_path = Path("/opt/models/logs/v1.2-vae-mf-medHR-mr-cvae-nl/ckpt/01760000/model.pt") | |
transformer_ckpt_state_dict = torch.load(transformer_local_path) | |
transformer.load_state_dict(transformer_ckpt_state_dict, True) | |
transformer = transformer.cuda() | |
unet = transformer | |
scheduler_config_path = Path("/opt/txt2img/txt2img/config/scheduler/RF_SD3_shifted.json") | |
scheduler_config = RectifiedFlowScheduler.load_config(scheduler_config_path) | |
scheduler = RectifiedFlowScheduler.from_config(scheduler_config) | |
patchifier = SymmetricPatchifier(patch_size=1) | |
# text_encoder = T5EncoderModel.from_pretrained("t5-v1_1-xxl") | |
submodel_dict = { | |
"unet": unet, | |
"transformer": transformer, | |
"patchifier": patchifier, | |
"text_encoder": None, | |
"scheduler": scheduler, | |
"vae": vae, | |
} | |
pipeline = VideoPixArtAlphaPipeline.from_pretrained(model_name_or_path, | |
safety_checker=None, | |
revision=None, | |
torch_dtype=dtype, | |
**submodel_dict, | |
) | |
num_inference_steps=20 | |
num_images_per_prompt=2 | |
guidance_scale=3 | |
height=512 | |
width=768 | |
num_frames=57 | |
frame_rate=25 | |
# sample = { | |
# "prompt": "A cat", # (B, L, E) | |
# 'prompt_attention_mask': None, # (B , L) | |
# 'negative_prompt': "Ugly deformed", | |
# 'negative_prompt_attention_mask': None # (B , L) | |
# } | |
sample = torch.load("/opt/sample.pt") | |
for _, item in sample.items(): | |
if item is not None: | |
item = item.cuda() | |
images = pipeline( | |
num_inference_steps=num_inference_steps, | |
num_images_per_prompt=num_images_per_prompt, | |
guidance_scale=guidance_scale, | |
generator=None, | |
output_type="pt", | |
callback_on_step_end=None, | |
height=height, | |
width=width, | |
num_frames=num_frames, | |
frame_rate=frame_rate, | |
**sample, | |
is_video=True, | |
vae_per_channel_normalize=True, | |
).images | |
print() |