Sapir's picture
refactor
c811a04
raw
history blame
9.4 kB
import math
from abc import ABC, abstractmethod
from dataclasses import dataclass
from typing import Callable, Optional, Tuple, Union
import torch
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.schedulers.scheduling_utils import SchedulerMixin
from diffusers.utils import BaseOutput
from torch import Tensor
from xora.utils.torch_utils import append_dims
def simple_diffusion_resolution_dependent_timestep_shift(
samples: Tensor,
timesteps: Tensor,
n: int = 32 * 32,
) -> Tensor:
if len(samples.shape) == 3:
_, m, _ = samples.shape
elif len(samples.shape) in [4, 5]:
m = math.prod(samples.shape[2:])
else:
raise ValueError("Samples must have shape (b, t, c), (b, c, h, w) or (b, c, f, h, w)")
snr = (timesteps / (1 - timesteps)) ** 2
shift_snr = torch.log(snr) + 2 * math.log(m / n)
shifted_timesteps = torch.sigmoid(0.5 * shift_snr)
return shifted_timesteps
def time_shift(mu: float, sigma: float, t: Tensor):
return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)
def get_normal_shift(
n_tokens: int,
min_tokens: int = 1024,
max_tokens: int = 4096,
min_shift: float = 0.95,
max_shift: float = 2.05,
) -> Callable[[float], float]:
m = (max_shift - min_shift) / (max_tokens - min_tokens)
b = min_shift - m * min_tokens
return m * n_tokens + b
def sd3_resolution_dependent_timestep_shift(samples: Tensor, timesteps: Tensor) -> Tensor:
"""
Shifts the timestep schedule as a function of the generated resolution.
In the SD3 paper, the authors empirically how to shift the timesteps based on the resolution of the target images.
For more details: https://arxiv.org/pdf/2403.03206
In Flux they later propose a more dynamic resolution dependent timestep shift, see:
https://github.com/black-forest-labs/flux/blob/87f6fff727a377ea1c378af692afb41ae84cbe04/src/flux/sampling.py#L66
Args:
samples (Tensor): A batch of samples with shape (batch_size, channels, height, width) or
(batch_size, channels, frame, height, width).
timesteps (Tensor): A batch of timesteps with shape (batch_size,).
Returns:
Tensor: The shifted timesteps.
"""
if len(samples.shape) == 3:
_, m, _ = samples.shape
elif len(samples.shape) in [4, 5]:
m = math.prod(samples.shape[2:])
else:
raise ValueError("Samples must have shape (b, t, c), (b, c, h, w) or (b, c, f, h, w)")
shift = get_normal_shift(m)
return time_shift(shift, 1, timesteps)
class TimestepShifter(ABC):
@abstractmethod
def shift_timesteps(self, samples: Tensor, timesteps: Tensor) -> Tensor:
pass
@dataclass
class RectifiedFlowSchedulerOutput(BaseOutput):
"""
Output class for the scheduler's step function output.
Args:
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
denoising loop.
pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
The predicted denoised sample (x_{0}) based on the model output from the current timestep.
`pred_original_sample` can be used to preview progress or for guidance.
"""
prev_sample: torch.FloatTensor
pred_original_sample: Optional[torch.FloatTensor] = None
class RectifiedFlowScheduler(SchedulerMixin, ConfigMixin, TimestepShifter):
order = 1
@register_to_config
def __init__(self, num_train_timesteps=1000, shifting: Optional[str] = None, base_resolution: int = 32**2):
super().__init__()
self.init_noise_sigma = 1.0
self.num_inference_steps = None
self.timesteps = self.sigmas = torch.linspace(1, 1 / num_train_timesteps, num_train_timesteps)
self.delta_timesteps = self.timesteps - torch.cat([self.timesteps[1:], torch.zeros_like(self.timesteps[-1:])])
self.shifting = shifting
self.base_resolution = base_resolution
def shift_timesteps(self, samples: Tensor, timesteps: Tensor) -> Tensor:
if self.shifting == "SD3":
return sd3_resolution_dependent_timestep_shift(samples, timesteps)
elif self.shifting == "SimpleDiffusion":
return simple_diffusion_resolution_dependent_timestep_shift(samples, timesteps, self.base_resolution)
return timesteps
def set_timesteps(self, num_inference_steps: int, samples: Tensor, device: Union[str, torch.device] = None):
"""
Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference.
Args:
num_inference_steps (`int`): The number of diffusion steps used when generating samples.
samples (`Tensor`): A batch of samples with shape.
device (`Union[str, torch.device]`, *optional*): The device to which the timesteps tensor will be moved.
"""
num_inference_steps = min(self.config.num_train_timesteps, num_inference_steps)
timesteps = torch.linspace(1, 1 / num_inference_steps, num_inference_steps).to(device)
self.timesteps = self.shift_timesteps(samples, timesteps)
self.delta_timesteps = self.timesteps - torch.cat([self.timesteps[1:], torch.zeros_like(self.timesteps[-1:])])
self.num_inference_steps = num_inference_steps
self.sigmas = self.timesteps
def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor:
# pylint: disable=unused-argument
"""
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
current timestep.
Args:
sample (`torch.FloatTensor`): input sample
timestep (`int`, optional): current timestep
Returns:
`torch.FloatTensor`: scaled input sample
"""
return sample
def step(
self,
model_output: torch.FloatTensor,
timestep: torch.FloatTensor,
sample: torch.FloatTensor,
eta: float = 0.0,
use_clipped_model_output: bool = False,
generator=None,
variance_noise: Optional[torch.FloatTensor] = None,
return_dict: bool = True,
) -> Union[RectifiedFlowSchedulerOutput, Tuple]:
# pylint: disable=unused-argument
"""
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
process from the learned model outputs (most often the predicted noise).
Args:
model_output (`torch.FloatTensor`):
The direct output from learned diffusion model.
timestep (`float`):
The current discrete timestep in the diffusion chain.
sample (`torch.FloatTensor`):
A current instance of a sample created by the diffusion process.
eta (`float`):
The weight of noise for added noise in diffusion step.
use_clipped_model_output (`bool`, defaults to `False`):
If `True`, computes "corrected" `model_output` from the clipped predicted original sample. Necessary
because predicted original sample is clipped to [-1, 1] when `self.config.clip_sample` is `True`. If no
clipping has happened, "corrected" `model_output` would coincide with the one provided as input and
`use_clipped_model_output` has no effect.
generator (`torch.Generator`, *optional*):
A random number generator.
variance_noise (`torch.FloatTensor`):
Alternative to generating noise with `generator` by directly providing the noise for the variance
itself. Useful for methods such as [`CycleDiffusion`].
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~schedulers.scheduling_ddim.DDIMSchedulerOutput`] or `tuple`.
Returns:
[`~schedulers.scheduling_utils.RectifiedFlowSchedulerOutput`] or `tuple`:
If return_dict is `True`, [`~schedulers.rf_scheduler.RectifiedFlowSchedulerOutput`] is returned,
otherwise a tuple is returned where the first element is the sample tensor.
"""
if self.num_inference_steps is None:
raise ValueError(
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
)
current_index = (self.timesteps - timestep).abs().argmin()
dt = self.delta_timesteps.gather(0, current_index.unsqueeze(0))
prev_sample = sample - dt * model_output
if not return_dict:
return (prev_sample,)
return RectifiedFlowSchedulerOutput(prev_sample=prev_sample)
def add_noise(
self,
original_samples: torch.FloatTensor,
noise: torch.FloatTensor,
timesteps: torch.FloatTensor,
) -> torch.FloatTensor:
sigmas = timesteps
sigmas = append_dims(sigmas, original_samples.ndim)
alphas = 1 - sigmas
noisy_samples = alphas * original_samples + sigmas * noise
return noisy_samples