Spaces:
Running
on
A100
Running
on
A100
import math | |
from abc import ABC, abstractmethod | |
from dataclasses import dataclass | |
from typing import Callable, Optional, Tuple, Union | |
import torch | |
from diffusers.configuration_utils import ConfigMixin, register_to_config | |
from diffusers.schedulers.scheduling_utils import SchedulerMixin | |
from diffusers.utils import BaseOutput | |
from torch import Tensor | |
from xora.utils.torch_utils import append_dims | |
def simple_diffusion_resolution_dependent_timestep_shift( | |
samples: Tensor, | |
timesteps: Tensor, | |
n: int = 32 * 32, | |
) -> Tensor: | |
if len(samples.shape) == 3: | |
_, m, _ = samples.shape | |
elif len(samples.shape) in [4, 5]: | |
m = math.prod(samples.shape[2:]) | |
else: | |
raise ValueError( | |
"Samples must have shape (b, t, c), (b, c, h, w) or (b, c, f, h, w)" | |
) | |
snr = (timesteps / (1 - timesteps)) ** 2 | |
shift_snr = torch.log(snr) + 2 * math.log(m / n) | |
shifted_timesteps = torch.sigmoid(0.5 * shift_snr) | |
return shifted_timesteps | |
def time_shift(mu: float, sigma: float, t: Tensor): | |
return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma) | |
def get_normal_shift( | |
n_tokens: int, | |
min_tokens: int = 1024, | |
max_tokens: int = 4096, | |
min_shift: float = 0.95, | |
max_shift: float = 2.05, | |
) -> Callable[[float], float]: | |
m = (max_shift - min_shift) / (max_tokens - min_tokens) | |
b = min_shift - m * min_tokens | |
return m * n_tokens + b | |
def sd3_resolution_dependent_timestep_shift( | |
samples: Tensor, timesteps: Tensor | |
) -> Tensor: | |
""" | |
Shifts the timestep schedule as a function of the generated resolution. | |
In the SD3 paper, the authors empirically how to shift the timesteps based on the resolution of the target images. | |
For more details: https://arxiv.org/pdf/2403.03206 | |
In Flux they later propose a more dynamic resolution dependent timestep shift, see: | |
https://github.com/black-forest-labs/flux/blob/87f6fff727a377ea1c378af692afb41ae84cbe04/src/flux/sampling.py#L66 | |
Args: | |
samples (Tensor): A batch of samples with shape (batch_size, channels, height, width) or | |
(batch_size, channels, frame, height, width). | |
timesteps (Tensor): A batch of timesteps with shape (batch_size,). | |
Returns: | |
Tensor: The shifted timesteps. | |
""" | |
if len(samples.shape) == 3: | |
_, m, _ = samples.shape | |
elif len(samples.shape) in [4, 5]: | |
m = math.prod(samples.shape[2:]) | |
else: | |
raise ValueError( | |
"Samples must have shape (b, t, c), (b, c, h, w) or (b, c, f, h, w)" | |
) | |
shift = get_normal_shift(m) | |
return time_shift(shift, 1, timesteps) | |
class TimestepShifter(ABC): | |
def shift_timesteps(self, samples: Tensor, timesteps: Tensor) -> Tensor: | |
pass | |
class RectifiedFlowSchedulerOutput(BaseOutput): | |
""" | |
Output class for the scheduler's step function output. | |
Args: | |
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): | |
Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the | |
denoising loop. | |
pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): | |
The predicted denoised sample (x_{0}) based on the model output from the current timestep. | |
`pred_original_sample` can be used to preview progress or for guidance. | |
""" | |
prev_sample: torch.FloatTensor | |
pred_original_sample: Optional[torch.FloatTensor] = None | |
class RectifiedFlowScheduler(SchedulerMixin, ConfigMixin, TimestepShifter): | |
order = 1 | |
def __init__( | |
self, | |
num_train_timesteps=1000, | |
shifting: Optional[str] = None, | |
base_resolution: int = 32**2, | |
): | |
super().__init__() | |
self.init_noise_sigma = 1.0 | |
self.num_inference_steps = None | |
self.timesteps = self.sigmas = torch.linspace( | |
1, 1 / num_train_timesteps, num_train_timesteps | |
) | |
self.delta_timesteps = self.timesteps - torch.cat( | |
[self.timesteps[1:], torch.zeros_like(self.timesteps[-1:])] | |
) | |
self.shifting = shifting | |
self.base_resolution = base_resolution | |
def shift_timesteps(self, samples: Tensor, timesteps: Tensor) -> Tensor: | |
if self.shifting == "SD3": | |
return sd3_resolution_dependent_timestep_shift(samples, timesteps) | |
elif self.shifting == "SimpleDiffusion": | |
return simple_diffusion_resolution_dependent_timestep_shift( | |
samples, timesteps, self.base_resolution | |
) | |
return timesteps | |
def set_timesteps( | |
self, | |
num_inference_steps: int, | |
samples: Tensor, | |
device: Union[str, torch.device] = None, | |
): | |
""" | |
Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference. | |
Args: | |
num_inference_steps (`int`): The number of diffusion steps used when generating samples. | |
samples (`Tensor`): A batch of samples with shape. | |
device (`Union[str, torch.device]`, *optional*): The device to which the timesteps tensor will be moved. | |
""" | |
num_inference_steps = min(self.config.num_train_timesteps, num_inference_steps) | |
timesteps = torch.linspace(1, 1 / num_inference_steps, num_inference_steps).to( | |
device | |
) | |
self.timesteps = self.shift_timesteps(samples, timesteps) | |
self.delta_timesteps = self.timesteps - torch.cat( | |
[self.timesteps[1:], torch.zeros_like(self.timesteps[-1:])] | |
) | |
self.num_inference_steps = num_inference_steps | |
self.sigmas = self.timesteps | |
def scale_model_input( | |
self, sample: torch.FloatTensor, timestep: Optional[int] = None | |
) -> torch.FloatTensor: | |
# pylint: disable=unused-argument | |
""" | |
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the | |
current timestep. | |
Args: | |
sample (`torch.FloatTensor`): input sample | |
timestep (`int`, optional): current timestep | |
Returns: | |
`torch.FloatTensor`: scaled input sample | |
""" | |
return sample | |
def step( | |
self, | |
model_output: torch.FloatTensor, | |
timestep: torch.FloatTensor, | |
sample: torch.FloatTensor, | |
eta: float = 0.0, | |
use_clipped_model_output: bool = False, | |
generator=None, | |
variance_noise: Optional[torch.FloatTensor] = None, | |
return_dict: bool = True, | |
) -> Union[RectifiedFlowSchedulerOutput, Tuple]: | |
# pylint: disable=unused-argument | |
""" | |
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion | |
process from the learned model outputs (most often the predicted noise). | |
Args: | |
model_output (`torch.FloatTensor`): | |
The direct output from learned diffusion model. | |
timestep (`float`): | |
The current discrete timestep in the diffusion chain. | |
sample (`torch.FloatTensor`): | |
A current instance of a sample created by the diffusion process. | |
eta (`float`): | |
The weight of noise for added noise in diffusion step. | |
use_clipped_model_output (`bool`, defaults to `False`): | |
If `True`, computes "corrected" `model_output` from the clipped predicted original sample. Necessary | |
because predicted original sample is clipped to [-1, 1] when `self.config.clip_sample` is `True`. If no | |
clipping has happened, "corrected" `model_output` would coincide with the one provided as input and | |
`use_clipped_model_output` has no effect. | |
generator (`torch.Generator`, *optional*): | |
A random number generator. | |
variance_noise (`torch.FloatTensor`): | |
Alternative to generating noise with `generator` by directly providing the noise for the variance | |
itself. Useful for methods such as [`CycleDiffusion`]. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~schedulers.scheduling_ddim.DDIMSchedulerOutput`] or `tuple`. | |
Returns: | |
[`~schedulers.scheduling_utils.RectifiedFlowSchedulerOutput`] or `tuple`: | |
If return_dict is `True`, [`~schedulers.rf_scheduler.RectifiedFlowSchedulerOutput`] is returned, | |
otherwise a tuple is returned where the first element is the sample tensor. | |
""" | |
if self.num_inference_steps is None: | |
raise ValueError( | |
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" | |
) | |
if timestep.ndim == 0: | |
# Global timestep | |
current_index = (self.timesteps - timestep).abs().argmin() | |
dt = self.delta_timesteps.gather(0, current_index.unsqueeze(0)) | |
else: | |
# Timestep per token | |
assert timestep.ndim == 2 | |
current_index = ( | |
(self.timesteps[:, None, None] - timestep[None]).abs().argmin(dim=0) | |
) | |
dt = self.delta_timesteps[current_index] | |
# Special treatment for zero timestep tokens - set dt to 0 so prev_sample = sample | |
dt = torch.where(timestep == 0.0, torch.zeros_like(dt), dt)[..., None] | |
prev_sample = sample - dt * model_output | |
if not return_dict: | |
return (prev_sample,) | |
return RectifiedFlowSchedulerOutput(prev_sample=prev_sample) | |
def add_noise( | |
self, | |
original_samples: torch.FloatTensor, | |
noise: torch.FloatTensor, | |
timesteps: torch.FloatTensor, | |
) -> torch.FloatTensor: | |
sigmas = timesteps | |
sigmas = append_dims(sigmas, original_samples.ndim) | |
alphas = 1 - sigmas | |
noisy_samples = alphas * original_samples + sigmas * noise | |
return noisy_samples | |