Spaces:
Running
on
A100
Running
on
A100
wip
Browse files- eval.py +68 -0
- patchify/symmetric.py +47 -0
- pipeline/pipeline_video_pixart_alpha.py +929 -0
- scheduler/rf.py +222 -0
- transformer/transformer3d.py +436 -0
- vae/causal_video_encoder.py +764 -0
eval.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from vae.causal_video_autoencoder import CausalVideoAutoencoder
|
3 |
+
from transformer.transformer3d import Trasformer3D
|
4 |
+
from patchify.symmetric import SymmetricPatchifier
|
5 |
+
|
6 |
+
|
7 |
+
model_name_or_path = "PixArt-alpha/PixArt-XL-2-1024-MS"
|
8 |
+
vae_path = "/opt/models/checkpoints/vae_training/causal_vvae_32x32x8_420m_cont_32/step_2296000"
|
9 |
+
dtype = torch.float32
|
10 |
+
vae = CausalVideoAutoencoder.from_pretrained(
|
11 |
+
pretrained_model_name_or_path=vae_local_path,
|
12 |
+
revision=False,
|
13 |
+
torch_dtype=torch.bfloat16,
|
14 |
+
load_in_8bit=False,
|
15 |
+
)
|
16 |
+
transformer_config_path = "/opt/txt2img/txt2img/config/transformer3d/xora_v1.2-L.json"
|
17 |
+
transformer_config = Transformer3D.load_config(config_local_path)
|
18 |
+
transformer = Transformer3D.from_config(config)
|
19 |
+
transformer_local_path = "/opt/models/logs/v1.2-vae-mf-medHR-mr-cvae-nl/ckpt/01760000/model.p"
|
20 |
+
transformer_ckpt_state_dict = torch.load(transformer_local_path)
|
21 |
+
transformer.load_state_dict(transformer_ckpt_state_dict, True)
|
22 |
+
unet = transformer
|
23 |
+
scheduler_config_path = "/opt/txt2img/txt2img/config/scheduler/RF_SD3_shifted.json"
|
24 |
+
scheduler_config = RectifiedFlowScheduler.load_config(config_local_path)
|
25 |
+
scheduler = RectifiedFlowScheduler.from_config(config)
|
26 |
+
patchifier = SymmetricPatchifier(patch_size=1)
|
27 |
+
|
28 |
+
|
29 |
+
|
30 |
+
pipeline = VideoPixArtAlphaPipeline.from_pretrained(model_name_or_path,
|
31 |
+
safety_checker=None,
|
32 |
+
revision=None,
|
33 |
+
torch_dtype=dtype,
|
34 |
+
**submodel_dict,
|
35 |
+
)
|
36 |
+
|
37 |
+
num_inference_steps=20
|
38 |
+
num_images_per_prompt=2
|
39 |
+
guidance_scale=3
|
40 |
+
height=512
|
41 |
+
width=768
|
42 |
+
num_frames=57
|
43 |
+
frame_rate=25
|
44 |
+
sample = {
|
45 |
+
"prompt_embeds": None, # (B, L, E)
|
46 |
+
'prompt_attention_mask': None, # (B , L)
|
47 |
+
'negative_prompt_embeds': None,' # (B, L, E)
|
48 |
+
'negative_prompt': None,
|
49 |
+
'negative_prompt_attention_mask': None # (B , L)
|
50 |
+
}
|
51 |
+
|
52 |
+
|
53 |
+
|
54 |
+
images = pipeline(
|
55 |
+
num_inference_steps=num_inference_steps,
|
56 |
+
num_images_per_prompt=num_images_per_prompt,
|
57 |
+
guidance_scale=guidance_scale,
|
58 |
+
generator=None,
|
59 |
+
output_type="pt",
|
60 |
+
callback_on_step_end=None,
|
61 |
+
height=height,
|
62 |
+
width=width,
|
63 |
+
num_frames=num_frames,
|
64 |
+
frame_rate=frame_rate,
|
65 |
+
**sample,
|
66 |
+
is_video=True,
|
67 |
+
vae_per_channel_noramlize=True,
|
68 |
+
).images
|
patchify/symmetric.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from abc import ABC, abstractmethod
|
2 |
+
from typing import Tuple
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from diffusers.configuration_utils import ConfigMixin
|
6 |
+
from einops import rearrange
|
7 |
+
from torch import Tensor
|
8 |
+
|
9 |
+
from txt2img.common.torch_utils import append_dims
|
10 |
+
from txt2img.config.diffusion_parts import PatchifierConfig, PatchifierName
|
11 |
+
|
12 |
+
|
13 |
+
def pixart_alpha_patchify(
|
14 |
+
latents: Tensor,
|
15 |
+
patch_size: int,
|
16 |
+
) -> Tuple[Tensor, Tensor]:
|
17 |
+
latents = rearrange(
|
18 |
+
latents,
|
19 |
+
"b c (f p1) (h p2) (w p3) -> b (f h w) (c p1 p2 p3)",
|
20 |
+
p1=patch_size[0],
|
21 |
+
p2=patch_size[1],
|
22 |
+
p3=patch_size[2],
|
23 |
+
)
|
24 |
+
return latents
|
25 |
+
|
26 |
+
class SymmetricPatchifier(Patchifier):
|
27 |
+
def patchify(
|
28 |
+
self,
|
29 |
+
latents: Tensor,
|
30 |
+
) -> Tuple[Tensor, Tensor]:
|
31 |
+
return pixart_alpha_patchify(latents, self._patch_size)
|
32 |
+
|
33 |
+
def unpatchify(
|
34 |
+
self, latents: Tensor, output_height: int, output_width: int, output_num_frames: int, out_channels: int
|
35 |
+
) -> Tuple[Tensor, Tensor]:
|
36 |
+
output_height = output_height // self._patch_size[1]
|
37 |
+
output_width = output_width // self._patch_size[2]
|
38 |
+
latents = rearrange(
|
39 |
+
latents,
|
40 |
+
"b (f h w) (c p q) -> b c f (h p) (w q) ",
|
41 |
+
f=output_num_frames,
|
42 |
+
h=output_height,
|
43 |
+
w=output_width,
|
44 |
+
p=self._patch_size[1],
|
45 |
+
q=self._patch_size[2],
|
46 |
+
)
|
47 |
+
return latents
|
pipeline/pipeline_video_pixart_alpha.py
ADDED
@@ -0,0 +1,929 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# # Adapted from: https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py
|
2 |
+
import html
|
3 |
+
import inspect
|
4 |
+
import math
|
5 |
+
import re
|
6 |
+
import urllib.parse as ul
|
7 |
+
from typing import Callable, Dict, List, Optional, Tuple, Union
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn.functional as F
|
11 |
+
from diffusers.image_processor import VaeImageProcessor
|
12 |
+
from diffusers.models import AutoencoderKL
|
13 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, ImagePipelineOutput
|
14 |
+
from diffusers.schedulers import DPMSolverMultistepScheduler
|
15 |
+
from diffusers.utils import (
|
16 |
+
BACKENDS_MAPPING,
|
17 |
+
deprecate,
|
18 |
+
is_bs4_available,
|
19 |
+
is_ftfy_available,
|
20 |
+
logging,
|
21 |
+
replace_example_docstring,
|
22 |
+
)
|
23 |
+
from diffusers.utils.torch_utils import randn_tensor
|
24 |
+
from einops import rearrange
|
25 |
+
from transformers import T5EncoderModel, T5Tokenizer
|
26 |
+
|
27 |
+
from dataset_metadata.data_field_name import DataFieldName
|
28 |
+
from txt2img.config.eval import ValLossConfig
|
29 |
+
from txt2img.diffusers_schedulers.rf_scheduler import TimestepShifter
|
30 |
+
from txt2img.diffusion.loss.losses import DiffusionLoss
|
31 |
+
from txt2img.diffusion.models.pixart.transformer_3d import Transformer3DModel
|
32 |
+
from txt2img.diffusion.patchify import Patchifier
|
33 |
+
from txt2img.diffusion.vae_encode import get_vae_size_scale_factor, vae_decode, vae_encode
|
34 |
+
from txt2img.vae.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder
|
35 |
+
|
36 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
37 |
+
|
38 |
+
if is_bs4_available():
|
39 |
+
from bs4 import BeautifulSoup
|
40 |
+
|
41 |
+
if is_ftfy_available():
|
42 |
+
import ftfy
|
43 |
+
|
44 |
+
def retrieve_timesteps(
|
45 |
+
scheduler,
|
46 |
+
num_inference_steps: Optional[int] = None,
|
47 |
+
device: Optional[Union[str, torch.device]] = None,
|
48 |
+
timesteps: Optional[List[int]] = None,
|
49 |
+
**kwargs,
|
50 |
+
):
|
51 |
+
"""
|
52 |
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
53 |
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
54 |
+
|
55 |
+
Args:
|
56 |
+
scheduler (`SchedulerMixin`):
|
57 |
+
The scheduler to get timesteps from.
|
58 |
+
num_inference_steps (`int`):
|
59 |
+
The number of diffusion steps used when generating samples with a pre-trained model. If used,
|
60 |
+
`timesteps` must be `None`.
|
61 |
+
device (`str` or `torch.device`, *optional*):
|
62 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
63 |
+
timesteps (`List[int]`, *optional*):
|
64 |
+
Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
|
65 |
+
timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps`
|
66 |
+
must be `None`.
|
67 |
+
|
68 |
+
Returns:
|
69 |
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
70 |
+
second element is the number of inference steps.
|
71 |
+
"""
|
72 |
+
if timesteps is not None:
|
73 |
+
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
74 |
+
if not accepts_timesteps:
|
75 |
+
raise ValueError(
|
76 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
77 |
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
78 |
+
)
|
79 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
80 |
+
timesteps = scheduler.timesteps
|
81 |
+
num_inference_steps = len(timesteps)
|
82 |
+
else:
|
83 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
84 |
+
timesteps = scheduler.timesteps
|
85 |
+
return timesteps, num_inference_steps
|
86 |
+
|
87 |
+
|
88 |
+
class VideoPixArtAlphaPipeline(DiffusionPipeline):
|
89 |
+
r"""
|
90 |
+
Pipeline for text-to-image generation using PixArt-Alpha.
|
91 |
+
|
92 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
93 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
94 |
+
|
95 |
+
Args:
|
96 |
+
vae ([`AutoencoderKL`]):
|
97 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
98 |
+
text_encoder ([`T5EncoderModel`]):
|
99 |
+
Frozen text-encoder. PixArt-Alpha uses
|
100 |
+
[T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the
|
101 |
+
[t5-v1_1-xxl](https://huggingface.co/PixArt-alpha/PixArt-alpha/tree/main/t5-v1_1-xxl) variant.
|
102 |
+
tokenizer (`T5Tokenizer`):
|
103 |
+
Tokenizer of class
|
104 |
+
[T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer).
|
105 |
+
transformer ([`Transformer2DModel`]):
|
106 |
+
A text conditioned `Transformer2DModel` to denoise the encoded image latents.
|
107 |
+
scheduler ([`SchedulerMixin`]):
|
108 |
+
A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
|
109 |
+
"""
|
110 |
+
|
111 |
+
bad_punct_regex = re.compile(
|
112 |
+
r"["
|
113 |
+
+ "#®•©™&@·º½¾¿¡§~"
|
114 |
+
+ r"\)"
|
115 |
+
+ r"\("
|
116 |
+
+ r"\]"
|
117 |
+
+ r"\["
|
118 |
+
+ r"\}"
|
119 |
+
+ r"\{"
|
120 |
+
+ r"\|"
|
121 |
+
+ "\\"
|
122 |
+
+ r"\/"
|
123 |
+
+ r"\*"
|
124 |
+
+ r"]{1,}"
|
125 |
+
) # noqa
|
126 |
+
|
127 |
+
_optional_components = ["tokenizer", "text_encoder"]
|
128 |
+
model_cpu_offload_seq = "text_encoder->transformer->vae"
|
129 |
+
|
130 |
+
def __init__(
|
131 |
+
self,
|
132 |
+
tokenizer: T5Tokenizer,
|
133 |
+
text_encoder: T5EncoderModel,
|
134 |
+
vae: AutoencoderKL,
|
135 |
+
transformer: Transformer3DModel,
|
136 |
+
scheduler: DPMSolverMultistepScheduler,
|
137 |
+
patchifier: Patchifier,
|
138 |
+
):
|
139 |
+
super().__init__()
|
140 |
+
|
141 |
+
self.register_modules(
|
142 |
+
tokenizer=tokenizer,
|
143 |
+
text_encoder=text_encoder,
|
144 |
+
vae=vae,
|
145 |
+
transformer=transformer,
|
146 |
+
scheduler=scheduler,
|
147 |
+
patchifier=patchifier,
|
148 |
+
)
|
149 |
+
|
150 |
+
self.video_scale_factor, self.vae_scale_factor, _ = get_vae_size_scale_factor(self.vae)
|
151 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
152 |
+
|
153 |
+
# Adapted from https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/utils.py
|
154 |
+
def mask_text_embeddings(self, emb, mask):
|
155 |
+
if emb.shape[0] == 1:
|
156 |
+
keep_index = mask.sum().item()
|
157 |
+
return emb[:, :, :keep_index, :], keep_index
|
158 |
+
else:
|
159 |
+
masked_feature = emb * mask[:, None, :, None]
|
160 |
+
return masked_feature, emb.shape[2]
|
161 |
+
|
162 |
+
# Adapted from diffusers.pipelines.deepfloyd_if.pipeline_if.encode_prompt
|
163 |
+
def encode_prompt(
|
164 |
+
self,
|
165 |
+
prompt: Union[str, List[str]],
|
166 |
+
do_classifier_free_guidance: bool = True,
|
167 |
+
negative_prompt: str = "",
|
168 |
+
num_images_per_prompt: int = 1,
|
169 |
+
device: Optional[torch.device] = None,
|
170 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
171 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
172 |
+
prompt_attention_mask: Optional[torch.FloatTensor] = None,
|
173 |
+
negative_prompt_attention_mask: Optional[torch.FloatTensor] = None,
|
174 |
+
clean_caption: bool = False,
|
175 |
+
**kwargs,
|
176 |
+
):
|
177 |
+
r"""
|
178 |
+
Encodes the prompt into text encoder hidden states.
|
179 |
+
|
180 |
+
Args:
|
181 |
+
prompt (`str` or `List[str]`, *optional*):
|
182 |
+
prompt to be encoded
|
183 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
184 |
+
The prompt not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds`
|
185 |
+
instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). For
|
186 |
+
PixArt-Alpha, this should be "".
|
187 |
+
do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
|
188 |
+
whether to use classifier free guidance or not
|
189 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
190 |
+
number of images that should be generated per prompt
|
191 |
+
device: (`torch.device`, *optional*):
|
192 |
+
torch device to place the resulting embeddings on
|
193 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
194 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
195 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
196 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
197 |
+
Pre-generated negative text embeddings. For PixArt-Alpha, it's should be the embeddings of the ""
|
198 |
+
string.
|
199 |
+
clean_caption (bool, defaults to `False`):
|
200 |
+
If `True`, the function will preprocess and clean the provided caption before encoding.
|
201 |
+
"""
|
202 |
+
|
203 |
+
if "mask_feature" in kwargs:
|
204 |
+
deprecation_message = "The use of `mask_feature` is deprecated. It is no longer used in any computation and that doesn't affect the end results. It will be removed in a future version."
|
205 |
+
deprecate("mask_feature", "1.0.0", deprecation_message, standard_warn=False)
|
206 |
+
|
207 |
+
if device is None:
|
208 |
+
device = self._execution_device
|
209 |
+
|
210 |
+
if prompt is not None and isinstance(prompt, str):
|
211 |
+
batch_size = 1
|
212 |
+
elif prompt is not None and isinstance(prompt, list):
|
213 |
+
batch_size = len(prompt)
|
214 |
+
else:
|
215 |
+
batch_size = prompt_embeds.shape[0]
|
216 |
+
|
217 |
+
# See Section 3.1. of the paper.
|
218 |
+
# FIXME: to be configured in config not hardecoded. Fix in separate PR with rest of config
|
219 |
+
max_length = 128 # TPU supports only lengths multiple of 128
|
220 |
+
|
221 |
+
if prompt_embeds is None:
|
222 |
+
prompt = self._text_preprocessing(prompt, clean_caption=clean_caption)
|
223 |
+
text_inputs = self.tokenizer(
|
224 |
+
prompt,
|
225 |
+
padding="max_length",
|
226 |
+
max_length=max_length,
|
227 |
+
truncation=True,
|
228 |
+
add_special_tokens=True,
|
229 |
+
return_tensors="pt",
|
230 |
+
)
|
231 |
+
text_input_ids = text_inputs.input_ids
|
232 |
+
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
233 |
+
|
234 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
235 |
+
text_input_ids, untruncated_ids
|
236 |
+
):
|
237 |
+
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_length - 1 : -1])
|
238 |
+
logger.warning(
|
239 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
240 |
+
f" {max_length} tokens: {removed_text}"
|
241 |
+
)
|
242 |
+
|
243 |
+
prompt_attention_mask = text_inputs.attention_mask
|
244 |
+
prompt_attention_mask = prompt_attention_mask.to(device)
|
245 |
+
|
246 |
+
prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=prompt_attention_mask)
|
247 |
+
prompt_embeds = prompt_embeds[0]
|
248 |
+
|
249 |
+
if self.text_encoder is not None:
|
250 |
+
dtype = self.text_encoder.dtype
|
251 |
+
elif self.transformer is not None:
|
252 |
+
dtype = self.transformer.dtype
|
253 |
+
else:
|
254 |
+
dtype = None
|
255 |
+
|
256 |
+
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
257 |
+
|
258 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
259 |
+
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
|
260 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
261 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
262 |
+
prompt_attention_mask = prompt_attention_mask.repeat(1, num_images_per_prompt)
|
263 |
+
prompt_attention_mask = prompt_attention_mask.view(bs_embed * num_images_per_prompt, -1)
|
264 |
+
|
265 |
+
# get unconditional embeddings for classifier free guidance
|
266 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
267 |
+
uncond_tokens = [negative_prompt] * batch_size
|
268 |
+
uncond_tokens = self._text_preprocessing(uncond_tokens, clean_caption=clean_caption)
|
269 |
+
max_length = prompt_embeds.shape[1]
|
270 |
+
uncond_input = self.tokenizer(
|
271 |
+
uncond_tokens,
|
272 |
+
padding="max_length",
|
273 |
+
max_length=max_length,
|
274 |
+
truncation=True,
|
275 |
+
return_attention_mask=True,
|
276 |
+
add_special_tokens=True,
|
277 |
+
return_tensors="pt",
|
278 |
+
)
|
279 |
+
negative_prompt_attention_mask = uncond_input.attention_mask
|
280 |
+
negative_prompt_attention_mask = negative_prompt_attention_mask.to(device)
|
281 |
+
|
282 |
+
negative_prompt_embeds = self.text_encoder(
|
283 |
+
uncond_input.input_ids.to(device), attention_mask=negative_prompt_attention_mask
|
284 |
+
)
|
285 |
+
negative_prompt_embeds = negative_prompt_embeds[0]
|
286 |
+
|
287 |
+
if do_classifier_free_guidance:
|
288 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
289 |
+
seq_len = negative_prompt_embeds.shape[1]
|
290 |
+
|
291 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device)
|
292 |
+
|
293 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
294 |
+
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
295 |
+
|
296 |
+
negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(1, num_images_per_prompt)
|
297 |
+
negative_prompt_attention_mask = negative_prompt_attention_mask.view(bs_embed * num_images_per_prompt, -1)
|
298 |
+
else:
|
299 |
+
negative_prompt_embeds = None
|
300 |
+
negative_prompt_attention_mask = None
|
301 |
+
|
302 |
+
return prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask
|
303 |
+
|
304 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
305 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
306 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
307 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
308 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
309 |
+
# and should be between [0, 1]
|
310 |
+
|
311 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
312 |
+
extra_step_kwargs = {}
|
313 |
+
if accepts_eta:
|
314 |
+
extra_step_kwargs["eta"] = eta
|
315 |
+
|
316 |
+
# check if the scheduler accepts generator
|
317 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
318 |
+
if accepts_generator:
|
319 |
+
extra_step_kwargs["generator"] = generator
|
320 |
+
return extra_step_kwargs
|
321 |
+
|
322 |
+
def check_inputs(
|
323 |
+
self,
|
324 |
+
prompt,
|
325 |
+
height,
|
326 |
+
width,
|
327 |
+
negative_prompt,
|
328 |
+
prompt_embeds=None,
|
329 |
+
negative_prompt_embeds=None,
|
330 |
+
prompt_attention_mask=None,
|
331 |
+
negative_prompt_attention_mask=None,
|
332 |
+
):
|
333 |
+
if height % 8 != 0 or width % 8 != 0:
|
334 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
335 |
+
|
336 |
+
if prompt is not None and prompt_embeds is not None:
|
337 |
+
raise ValueError(
|
338 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
339 |
+
" only forward one of the two."
|
340 |
+
)
|
341 |
+
elif prompt is None and prompt_embeds is None:
|
342 |
+
raise ValueError(
|
343 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
344 |
+
)
|
345 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
346 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
347 |
+
|
348 |
+
if prompt is not None and negative_prompt_embeds is not None:
|
349 |
+
raise ValueError(
|
350 |
+
f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:"
|
351 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
352 |
+
)
|
353 |
+
|
354 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
355 |
+
raise ValueError(
|
356 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
357 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
358 |
+
)
|
359 |
+
|
360 |
+
if prompt_embeds is not None and prompt_attention_mask is None:
|
361 |
+
raise ValueError("Must provide `prompt_attention_mask` when specifying `prompt_embeds`.")
|
362 |
+
|
363 |
+
if negative_prompt_embeds is not None and negative_prompt_attention_mask is None:
|
364 |
+
raise ValueError("Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.")
|
365 |
+
|
366 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
367 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
368 |
+
raise ValueError(
|
369 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
370 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
371 |
+
f" {negative_prompt_embeds.shape}."
|
372 |
+
)
|
373 |
+
if prompt_attention_mask.shape != negative_prompt_attention_mask.shape:
|
374 |
+
raise ValueError(
|
375 |
+
"`prompt_attention_mask` and `negative_prompt_attention_mask` must have the same shape when passed directly, but"
|
376 |
+
f" got: `prompt_attention_mask` {prompt_attention_mask.shape} != `negative_prompt_attention_mask`"
|
377 |
+
f" {negative_prompt_attention_mask.shape}."
|
378 |
+
)
|
379 |
+
|
380 |
+
# Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._text_preprocessing
|
381 |
+
def _text_preprocessing(self, text, clean_caption=False):
|
382 |
+
if clean_caption and not is_bs4_available():
|
383 |
+
logger.warn(BACKENDS_MAPPING["bs4"][-1].format("Setting `clean_caption=True`"))
|
384 |
+
logger.warn("Setting `clean_caption` to False...")
|
385 |
+
clean_caption = False
|
386 |
+
|
387 |
+
if clean_caption and not is_ftfy_available():
|
388 |
+
logger.warn(BACKENDS_MAPPING["ftfy"][-1].format("Setting `clean_caption=True`"))
|
389 |
+
logger.warn("Setting `clean_caption` to False...")
|
390 |
+
clean_caption = False
|
391 |
+
|
392 |
+
if not isinstance(text, (tuple, list)):
|
393 |
+
text = [text]
|
394 |
+
|
395 |
+
def process(text: str):
|
396 |
+
if clean_caption:
|
397 |
+
text = self._clean_caption(text)
|
398 |
+
text = self._clean_caption(text)
|
399 |
+
else:
|
400 |
+
text = text.lower().strip()
|
401 |
+
return text
|
402 |
+
|
403 |
+
return [process(t) for t in text]
|
404 |
+
|
405 |
+
# Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._clean_caption
|
406 |
+
def _clean_caption(self, caption):
|
407 |
+
caption = str(caption)
|
408 |
+
caption = ul.unquote_plus(caption)
|
409 |
+
caption = caption.strip().lower()
|
410 |
+
caption = re.sub("<person>", "person", caption)
|
411 |
+
# urls:
|
412 |
+
caption = re.sub(
|
413 |
+
r"\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa
|
414 |
+
"",
|
415 |
+
caption,
|
416 |
+
) # regex for urls
|
417 |
+
caption = re.sub(
|
418 |
+
r"\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa
|
419 |
+
"",
|
420 |
+
caption,
|
421 |
+
) # regex for urls
|
422 |
+
# html:
|
423 |
+
caption = BeautifulSoup(caption, features="html.parser").text
|
424 |
+
|
425 |
+
# @<nickname>
|
426 |
+
caption = re.sub(r"@[\w\d]+\b", "", caption)
|
427 |
+
|
428 |
+
# 31C0—31EF CJK Strokes
|
429 |
+
# 31F0—31FF Katakana Phonetic Extensions
|
430 |
+
# 3200—32FF Enclosed CJK Letters and Months
|
431 |
+
# 3300—33FF CJK Compatibility
|
432 |
+
# 3400—4DBF CJK Unified Ideographs Extension A
|
433 |
+
# 4DC0—4DFF Yijing Hexagram Symbols
|
434 |
+
# 4E00—9FFF CJK Unified Ideographs
|
435 |
+
caption = re.sub(r"[\u31c0-\u31ef]+", "", caption)
|
436 |
+
caption = re.sub(r"[\u31f0-\u31ff]+", "", caption)
|
437 |
+
caption = re.sub(r"[\u3200-\u32ff]+", "", caption)
|
438 |
+
caption = re.sub(r"[\u3300-\u33ff]+", "", caption)
|
439 |
+
caption = re.sub(r"[\u3400-\u4dbf]+", "", caption)
|
440 |
+
caption = re.sub(r"[\u4dc0-\u4dff]+", "", caption)
|
441 |
+
caption = re.sub(r"[\u4e00-\u9fff]+", "", caption)
|
442 |
+
#######################################################
|
443 |
+
|
444 |
+
# все виды тире / all types of dash --> "-"
|
445 |
+
caption = re.sub(
|
446 |
+
r"[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+", # noqa
|
447 |
+
"-",
|
448 |
+
caption,
|
449 |
+
)
|
450 |
+
|
451 |
+
# кавычки к одному стандарту
|
452 |
+
caption = re.sub(r"[`´«»“”¨]", '"', caption)
|
453 |
+
caption = re.sub(r"[‘’]", "'", caption)
|
454 |
+
|
455 |
+
# "
|
456 |
+
caption = re.sub(r""?", "", caption)
|
457 |
+
# &
|
458 |
+
caption = re.sub(r"&", "", caption)
|
459 |
+
|
460 |
+
# ip adresses:
|
461 |
+
caption = re.sub(r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}", " ", caption)
|
462 |
+
|
463 |
+
# article ids:
|
464 |
+
caption = re.sub(r"\d:\d\d\s+$", "", caption)
|
465 |
+
|
466 |
+
# \n
|
467 |
+
caption = re.sub(r"\\n", " ", caption)
|
468 |
+
|
469 |
+
# "#123"
|
470 |
+
caption = re.sub(r"#\d{1,3}\b", "", caption)
|
471 |
+
# "#12345.."
|
472 |
+
caption = re.sub(r"#\d{5,}\b", "", caption)
|
473 |
+
# "123456.."
|
474 |
+
caption = re.sub(r"\b\d{6,}\b", "", caption)
|
475 |
+
# filenames:
|
476 |
+
caption = re.sub(r"[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)", "", caption)
|
477 |
+
|
478 |
+
#
|
479 |
+
caption = re.sub(r"[\"\']{2,}", r'"', caption) # """AUSVERKAUFT"""
|
480 |
+
caption = re.sub(r"[\.]{2,}", r" ", caption) # """AUSVERKAUFT"""
|
481 |
+
|
482 |
+
caption = re.sub(self.bad_punct_regex, r" ", caption) # ***AUSVERKAUFT***, #AUSVERKAUFT
|
483 |
+
caption = re.sub(r"\s+\.\s+", r" ", caption) # " . "
|
484 |
+
|
485 |
+
# this-is-my-cute-cat / this_is_my_cute_cat
|
486 |
+
regex2 = re.compile(r"(?:\-|\_)")
|
487 |
+
if len(re.findall(regex2, caption)) > 3:
|
488 |
+
caption = re.sub(regex2, " ", caption)
|
489 |
+
|
490 |
+
caption = ftfy.fix_text(caption)
|
491 |
+
caption = html.unescape(html.unescape(caption))
|
492 |
+
|
493 |
+
caption = re.sub(r"\b[a-zA-Z]{1,3}\d{3,15}\b", "", caption) # jc6640
|
494 |
+
caption = re.sub(r"\b[a-zA-Z]+\d+[a-zA-Z]+\b", "", caption) # jc6640vc
|
495 |
+
caption = re.sub(r"\b\d+[a-zA-Z]+\d+\b", "", caption) # 6640vc231
|
496 |
+
|
497 |
+
caption = re.sub(r"(worldwide\s+)?(free\s+)?shipping", "", caption)
|
498 |
+
caption = re.sub(r"(free\s)?download(\sfree)?", "", caption)
|
499 |
+
caption = re.sub(r"\bclick\b\s(?:for|on)\s\w+", "", caption)
|
500 |
+
caption = re.sub(r"\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?", "", caption)
|
501 |
+
caption = re.sub(r"\bpage\s+\d+\b", "", caption)
|
502 |
+
|
503 |
+
caption = re.sub(r"\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b", r" ", caption) # j2d1a2a...
|
504 |
+
|
505 |
+
caption = re.sub(r"\b\d+\.?\d*[xх×]\d+\.?\d*\b", "", caption)
|
506 |
+
|
507 |
+
caption = re.sub(r"\b\s+\:\s+", r": ", caption)
|
508 |
+
caption = re.sub(r"(\D[,\./])\b", r"\1 ", caption)
|
509 |
+
caption = re.sub(r"\s+", " ", caption)
|
510 |
+
|
511 |
+
caption.strip()
|
512 |
+
|
513 |
+
caption = re.sub(r"^[\"\']([\w\W]+)[\"\']$", r"\1", caption)
|
514 |
+
caption = re.sub(r"^[\'\_,\-\:;]", r"", caption)
|
515 |
+
caption = re.sub(r"[\'\_,\-\:\-\+]$", r"", caption)
|
516 |
+
caption = re.sub(r"^\.\S+$", "", caption)
|
517 |
+
|
518 |
+
return caption.strip()
|
519 |
+
|
520 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
|
521 |
+
def prepare_latents(
|
522 |
+
self,
|
523 |
+
batch_size,
|
524 |
+
num_latent_channels,
|
525 |
+
num_patches,
|
526 |
+
dtype,
|
527 |
+
device,
|
528 |
+
generator,
|
529 |
+
latents=None,
|
530 |
+
):
|
531 |
+
shape = (
|
532 |
+
batch_size,
|
533 |
+
num_patches // math.prod(self.patchifier.patch_size),
|
534 |
+
num_latent_channels,
|
535 |
+
)
|
536 |
+
|
537 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
538 |
+
raise ValueError(
|
539 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
540 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
541 |
+
)
|
542 |
+
|
543 |
+
if latents is None:
|
544 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
545 |
+
else:
|
546 |
+
latents = latents.to(device)
|
547 |
+
|
548 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
549 |
+
latents = latents * self.scheduler.init_noise_sigma
|
550 |
+
return latents
|
551 |
+
|
552 |
+
@staticmethod
|
553 |
+
def classify_height_width_bin(height: int, width: int, ratios: dict) -> Tuple[int, int]:
|
554 |
+
"""Returns binned height and width."""
|
555 |
+
ar = float(height / width)
|
556 |
+
closest_ratio = min(ratios.keys(), key=lambda ratio: abs(float(ratio) - ar))
|
557 |
+
default_hw = ratios[closest_ratio]
|
558 |
+
return int(default_hw[0]), int(default_hw[1])
|
559 |
+
|
560 |
+
@staticmethod
|
561 |
+
def resize_and_crop_tensor(samples: torch.Tensor, new_width: int, new_height: int) -> torch.Tensor:
|
562 |
+
n_frames, orig_height, orig_width = samples.shape[-3:]
|
563 |
+
|
564 |
+
# Check if resizing is needed
|
565 |
+
if orig_height != new_height or orig_width != new_width:
|
566 |
+
ratio = max(new_height / orig_height, new_width / orig_width)
|
567 |
+
resized_width = int(orig_width * ratio)
|
568 |
+
resized_height = int(orig_height * ratio)
|
569 |
+
|
570 |
+
# Resize
|
571 |
+
samples = rearrange(samples, "b c n h w -> (b n) c h w")
|
572 |
+
samples = F.interpolate(samples, size=(resized_height, resized_width), mode="bilinear", align_corners=False)
|
573 |
+
samples = rearrange(samples, "(b n) c h w -> b c n h w", n=n_frames)
|
574 |
+
|
575 |
+
# Center Crop
|
576 |
+
start_x = (resized_width - new_width) // 2
|
577 |
+
end_x = start_x + new_width
|
578 |
+
start_y = (resized_height - new_height) // 2
|
579 |
+
end_y = start_y + new_height
|
580 |
+
samples = samples[..., start_y:end_y, start_x:end_x]
|
581 |
+
|
582 |
+
return samples
|
583 |
+
|
584 |
+
@torch.no_grad()
|
585 |
+
def calculate_val_loss(
|
586 |
+
self,
|
587 |
+
batch: Dict[str, torch.Tensor],
|
588 |
+
loss_obj: DiffusionLoss,
|
589 |
+
val_loss_config: ValLossConfig,
|
590 |
+
vae_per_channel_normalize: bool,
|
591 |
+
) -> torch.Tensor:
|
592 |
+
if DataFieldName.VIDEO in batch:
|
593 |
+
media_items = batch[DataFieldName.VIDEO]
|
594 |
+
else:
|
595 |
+
media_items = batch[DataFieldName.IMAGE]
|
596 |
+
media_items = media_items.to(dtype=self.vae.dtype)
|
597 |
+
|
598 |
+
if DataFieldName.VIDEO_AVERAGE_FPS in batch:
|
599 |
+
frame_rates = batch[DataFieldName.VIDEO_AVERAGE_FPS]
|
600 |
+
else:
|
601 |
+
frame_rates = torch.ones(media_items.shape[0], 1, device=media_items.device) * 25.0
|
602 |
+
frame_rates = frame_rates / self.video_scale_factor
|
603 |
+
|
604 |
+
if DataFieldName.T5_EMBEDDING in batch:
|
605 |
+
prompt_embeds = batch[DataFieldName.T5_EMBEDDING].to(dtype=self.transformer.dtype)
|
606 |
+
prompt_attn_mask = batch[DataFieldName.T5_EMBEDDING_MASK]
|
607 |
+
|
608 |
+
else:
|
609 |
+
text = batch[DataFieldName.CAPTION]
|
610 |
+
prompt_embeds, prompt_attn_mask, _, _ = self.encode_prompt(text)
|
611 |
+
|
612 |
+
latents = vae_encode(media_items, self.vae, vae_per_channel_normalize=vae_per_channel_normalize).float()
|
613 |
+
b, _, f, h, w = latents.shape
|
614 |
+
if self.patchifier:
|
615 |
+
scale_grid = (
|
616 |
+
(1 / frame_rates, self.vae_scale_factor, self.vae_scale_factor) if self.transformer.use_rope else None
|
617 |
+
)
|
618 |
+
indices_grid = self.patchifier.get_grid(
|
619 |
+
orig_num_frames=f,
|
620 |
+
orig_height=h,
|
621 |
+
orig_width=w,
|
622 |
+
batch_size=b,
|
623 |
+
scale_grid=scale_grid,
|
624 |
+
device=self.device,
|
625 |
+
)
|
626 |
+
latents = self.patchifier.patchify(latents=latents)
|
627 |
+
|
628 |
+
noise = torch.randn_like(latents)
|
629 |
+
noise_cond = torch.linspace(val_loss_config.min_step, val_loss_config.max_step, b, device=latents.device)
|
630 |
+
|
631 |
+
if isinstance(self.scheduler, TimestepShifter):
|
632 |
+
noise_cond = self.scheduler.shift_timesteps(latents, noise_cond)
|
633 |
+
|
634 |
+
noise_cond = noise_cond[:, None]
|
635 |
+
noisy_latents = self.scheduler.add_noise(latents, noise, noise_cond)
|
636 |
+
|
637 |
+
pred_mean = self.transformer(
|
638 |
+
hidden_states=noisy_latents.to(self.transformer.dtype),
|
639 |
+
timestep=noise_cond,
|
640 |
+
encoder_hidden_states=prompt_embeds,
|
641 |
+
encoder_attention_mask=prompt_attn_mask,
|
642 |
+
indices_grid=indices_grid,
|
643 |
+
).sample.float()
|
644 |
+
|
645 |
+
loss = loss_obj(
|
646 |
+
pred_mean=pred_mean,
|
647 |
+
x_start=latents,
|
648 |
+
noise=noise,
|
649 |
+
x_t=noisy_latents,
|
650 |
+
noise_cond=noise_cond,
|
651 |
+
)
|
652 |
+
|
653 |
+
return loss
|
654 |
+
|
655 |
+
@torch.no_grad()
|
656 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
657 |
+
def __call__(
|
658 |
+
self,
|
659 |
+
height: int,
|
660 |
+
width: int,
|
661 |
+
num_frames: int,
|
662 |
+
frame_rate: float,
|
663 |
+
prompt: Union[str, List[str]] = None,
|
664 |
+
negative_prompt: str = "",
|
665 |
+
num_inference_steps: int = 20,
|
666 |
+
timesteps: List[int] = None,
|
667 |
+
guidance_scale: float = 4.5,
|
668 |
+
num_images_per_prompt: Optional[int] = 1,
|
669 |
+
eta: float = 0.0,
|
670 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
671 |
+
latents: Optional[torch.FloatTensor] = None,
|
672 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
673 |
+
prompt_attention_mask: Optional[torch.FloatTensor] = None,
|
674 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
675 |
+
negative_prompt_attention_mask: Optional[torch.FloatTensor] = None,
|
676 |
+
output_type: Optional[str] = "pil",
|
677 |
+
return_dict: bool = True,
|
678 |
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
679 |
+
clean_caption: bool = True,
|
680 |
+
**kwargs,
|
681 |
+
) -> Union[ImagePipelineOutput, Tuple]:
|
682 |
+
"""
|
683 |
+
Function invoked when calling the pipeline for generation.
|
684 |
+
|
685 |
+
Args:
|
686 |
+
prompt (`str` or `List[str]`, *optional*):
|
687 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
688 |
+
instead.
|
689 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
690 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
691 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
692 |
+
less than `1`).
|
693 |
+
num_inference_steps (`int`, *optional*, defaults to 100):
|
694 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
695 |
+
expense of slower inference.
|
696 |
+
timesteps (`List[int]`, *optional*):
|
697 |
+
Custom timesteps to use for the denoising process. If not defined, equal spaced `num_inference_steps`
|
698 |
+
timesteps are used. Must be in descending order.
|
699 |
+
guidance_scale (`float`, *optional*, defaults to 4.5):
|
700 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
701 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
702 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
703 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
704 |
+
usually at the expense of lower image quality.
|
705 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
706 |
+
The number of images to generate per prompt.
|
707 |
+
height (`int`, *optional*, defaults to self.unet.config.sample_size):
|
708 |
+
The height in pixels of the generated image.
|
709 |
+
width (`int`, *optional*, defaults to self.unet.config.sample_size):
|
710 |
+
The width in pixels of the generated image.
|
711 |
+
eta (`float`, *optional*, defaults to 0.0):
|
712 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
713 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
714 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
715 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
716 |
+
to make generation deterministic.
|
717 |
+
latents (`torch.FloatTensor`, *optional*):
|
718 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
719 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
720 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
721 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
722 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
723 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
724 |
+
prompt_attention_mask (`torch.FloatTensor`, *optional*): Pre-generated attention mask for text embeddings.
|
725 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
726 |
+
Pre-generated negative text embeddings. For PixArt-Alpha this negative prompt should be "". If not
|
727 |
+
provided, negative_prompt_embeds will be generated from `negative_prompt` input argument.
|
728 |
+
negative_prompt_attention_mask (`torch.FloatTensor`, *optional*):
|
729 |
+
Pre-generated attention mask for negative text embeddings.
|
730 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
731 |
+
The output format of the generate image. Choose between
|
732 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
733 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
734 |
+
Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple.
|
735 |
+
callback_on_step_end (`Callable`, *optional*):
|
736 |
+
A function that calls at the end of each denoising steps during the inference. The function is called
|
737 |
+
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
738 |
+
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
739 |
+
`callback_on_step_end_tensor_inputs`.
|
740 |
+
clean_caption (`bool`, *optional*, defaults to `True`):
|
741 |
+
Whether or not to clean the caption before creating embeddings. Requires `beautifulsoup4` and `ftfy` to
|
742 |
+
be installed. If the dependencies are not installed, the embeddings will be created from the raw
|
743 |
+
prompt.
|
744 |
+
use_resolution_binning (`bool` defaults to `True`):
|
745 |
+
If set to `True`, the requested height and width are first mapped to the closest resolutions using
|
746 |
+
`ASPECT_RATIO_1024_BIN`. After the produced latents are decoded into images, they are resized back to
|
747 |
+
the requested resolution. Useful for generating non-square images.
|
748 |
+
|
749 |
+
Examples:
|
750 |
+
|
751 |
+
Returns:
|
752 |
+
[`~pipelines.ImagePipelineOutput`] or `tuple`:
|
753 |
+
If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is
|
754 |
+
returned where the first element is a list with the generated images
|
755 |
+
"""
|
756 |
+
if "mask_feature" in kwargs:
|
757 |
+
deprecation_message = "The use of `mask_feature` is deprecated. It is no longer used in any computation and that doesn't affect the end results. It will be removed in a future version."
|
758 |
+
deprecate("mask_feature", "1.0.0", deprecation_message, standard_warn=False)
|
759 |
+
|
760 |
+
is_video = kwargs.get("is_video", False)
|
761 |
+
self.check_inputs(
|
762 |
+
prompt,
|
763 |
+
height,
|
764 |
+
width,
|
765 |
+
negative_prompt,
|
766 |
+
prompt_embeds,
|
767 |
+
negative_prompt_embeds,
|
768 |
+
prompt_attention_mask,
|
769 |
+
negative_prompt_attention_mask,
|
770 |
+
)
|
771 |
+
|
772 |
+
# 2. Default height and width to transformer
|
773 |
+
if prompt is not None and isinstance(prompt, str):
|
774 |
+
batch_size = 1
|
775 |
+
elif prompt is not None and isinstance(prompt, list):
|
776 |
+
batch_size = len(prompt)
|
777 |
+
else:
|
778 |
+
batch_size = prompt_embeds.shape[0]
|
779 |
+
|
780 |
+
device = self._execution_device
|
781 |
+
|
782 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
783 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
784 |
+
# corresponds to doing no classifier free guidance.
|
785 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
786 |
+
|
787 |
+
# 3. Encode input prompt
|
788 |
+
(
|
789 |
+
prompt_embeds,
|
790 |
+
prompt_attention_mask,
|
791 |
+
negative_prompt_embeds,
|
792 |
+
negative_prompt_attention_mask,
|
793 |
+
) = self.encode_prompt(
|
794 |
+
prompt,
|
795 |
+
do_classifier_free_guidance,
|
796 |
+
negative_prompt=negative_prompt,
|
797 |
+
num_images_per_prompt=num_images_per_prompt,
|
798 |
+
device=device,
|
799 |
+
prompt_embeds=prompt_embeds,
|
800 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
801 |
+
prompt_attention_mask=prompt_attention_mask,
|
802 |
+
negative_prompt_attention_mask=negative_prompt_attention_mask,
|
803 |
+
clean_caption=clean_caption,
|
804 |
+
)
|
805 |
+
if do_classifier_free_guidance:
|
806 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
807 |
+
prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask], dim=0)
|
808 |
+
|
809 |
+
# 4. Prepare latents.
|
810 |
+
self.video_scale_factor = self.video_scale_factor if is_video else 1
|
811 |
+
latent_height = height // self.vae_scale_factor
|
812 |
+
latent_width = width // self.vae_scale_factor
|
813 |
+
latent_num_frames = num_frames // self.video_scale_factor
|
814 |
+
if isinstance(self.vae, CausalVideoAutoencoder) and is_video:
|
815 |
+
latent_num_frames += 1
|
816 |
+
latent_frame_rate = frame_rate / self.video_scale_factor
|
817 |
+
num_latent_patches = latent_height * latent_width * latent_num_frames
|
818 |
+
latents = self.prepare_latents(
|
819 |
+
batch_size=batch_size * num_images_per_prompt,
|
820 |
+
num_latent_channels=self.transformer.config.in_channels,
|
821 |
+
num_patches=num_latent_patches,
|
822 |
+
dtype=prompt_embeds.dtype,
|
823 |
+
device=device,
|
824 |
+
generator=generator,
|
825 |
+
)
|
826 |
+
|
827 |
+
# 5. Prepare timesteps
|
828 |
+
retrieve_timesteps_kwargs = {}
|
829 |
+
if isinstance(self.scheduler, TimestepShifter):
|
830 |
+
retrieve_timesteps_kwargs["samples"] = latents
|
831 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
832 |
+
self.scheduler, num_inference_steps, device, timesteps, **retrieve_timesteps_kwargs
|
833 |
+
)
|
834 |
+
|
835 |
+
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
836 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
837 |
+
|
838 |
+
# 7. Denoising loop
|
839 |
+
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
840 |
+
|
841 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
842 |
+
for i, t in enumerate(timesteps):
|
843 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
844 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
845 |
+
|
846 |
+
latent_frame_rates = (
|
847 |
+
torch.ones(latent_model_input.shape[0], 1, device=latent_model_input.device) * latent_frame_rate
|
848 |
+
)
|
849 |
+
|
850 |
+
current_timestep = t
|
851 |
+
if not torch.is_tensor(current_timestep):
|
852 |
+
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
853 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
854 |
+
is_mps = latent_model_input.device.type == "mps"
|
855 |
+
if isinstance(current_timestep, float):
|
856 |
+
dtype = torch.float32 if is_mps else torch.float64
|
857 |
+
else:
|
858 |
+
dtype = torch.int32 if is_mps else torch.int64
|
859 |
+
current_timestep = torch.tensor([current_timestep], dtype=dtype, device=latent_model_input.device)
|
860 |
+
elif len(current_timestep.shape) == 0:
|
861 |
+
current_timestep = current_timestep[None].to(latent_model_input.device)
|
862 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
863 |
+
current_timestep = current_timestep.expand(latent_model_input.shape[0])
|
864 |
+
scale_grid = (
|
865 |
+
(1 / latent_frame_rates, self.vae_scale_factor, self.vae_scale_factor)
|
866 |
+
if self.transformer.use_rope
|
867 |
+
else None
|
868 |
+
)
|
869 |
+
indices_grid = self.patchifier.get_grid(
|
870 |
+
orig_num_frames=latent_num_frames,
|
871 |
+
orig_height=latent_height,
|
872 |
+
orig_width=latent_width,
|
873 |
+
batch_size=latent_model_input.shape[0],
|
874 |
+
scale_grid=scale_grid,
|
875 |
+
device=latents.device,
|
876 |
+
)
|
877 |
+
|
878 |
+
# predict noise model_output
|
879 |
+
noise_pred = self.transformer(
|
880 |
+
latent_model_input.to(self.transformer.dtype),
|
881 |
+
indices_grid,
|
882 |
+
encoder_hidden_states=prompt_embeds.to(self.transformer.dtype),
|
883 |
+
encoder_attention_mask=prompt_attention_mask,
|
884 |
+
timestep=current_timestep,
|
885 |
+
return_dict=False,
|
886 |
+
)[0]
|
887 |
+
|
888 |
+
# perform guidance
|
889 |
+
if do_classifier_free_guidance:
|
890 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
891 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
892 |
+
|
893 |
+
# learned sigma
|
894 |
+
if self.transformer.config.out_channels // 2 == self.transformer.config.in_channels:
|
895 |
+
noise_pred = noise_pred.chunk(2, dim=1)[0]
|
896 |
+
|
897 |
+
# compute previous image: x_t -> x_t-1
|
898 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
899 |
+
|
900 |
+
# call the callback, if provided
|
901 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
902 |
+
progress_bar.update()
|
903 |
+
|
904 |
+
if callback_on_step_end is not None:
|
905 |
+
callback_on_step_end(self, i, t, {})
|
906 |
+
|
907 |
+
latents = self.patchifier.unpatchify(
|
908 |
+
latents=latents,
|
909 |
+
output_height=latent_height,
|
910 |
+
output_width=latent_width,
|
911 |
+
output_num_frames=latent_num_frames,
|
912 |
+
out_channels=self.transformer.in_channels // math.prod(self.patchifier.patch_size),
|
913 |
+
)
|
914 |
+
if output_type != "latent":
|
915 |
+
image = vae_decode(
|
916 |
+
latents, self.vae, is_video, vae_per_channel_normalize=kwargs["vae_per_channel_normalize"]
|
917 |
+
)
|
918 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
919 |
+
|
920 |
+
else:
|
921 |
+
image = latents
|
922 |
+
|
923 |
+
# Offload all models
|
924 |
+
self.maybe_free_model_hooks()
|
925 |
+
|
926 |
+
if not return_dict:
|
927 |
+
return (image,)
|
928 |
+
|
929 |
+
return ImagePipelineOutput(images=image)
|
scheduler/rf.py
ADDED
@@ -0,0 +1,222 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from abc import ABC, abstractmethod
|
3 |
+
from dataclasses import dataclass
|
4 |
+
from typing import Callable, Optional, Tuple, Union
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
8 |
+
from diffusers.schedulers.scheduling_utils import SchedulerMixin
|
9 |
+
from diffusers.utils import BaseOutput
|
10 |
+
from torch import Tensor
|
11 |
+
|
12 |
+
from txt2img.common.torch_utils import append_dims
|
13 |
+
|
14 |
+
|
15 |
+
def simple_diffusion_resolution_dependent_timestep_shift(
|
16 |
+
samples: Tensor,
|
17 |
+
timesteps: Tensor,
|
18 |
+
n: int = 32 * 32,
|
19 |
+
) -> Tensor:
|
20 |
+
if len(samples.shape) == 3:
|
21 |
+
_, m, _ = samples.shape
|
22 |
+
elif len(samples.shape) in [4, 5]:
|
23 |
+
m = math.prod(samples.shape[2:])
|
24 |
+
else:
|
25 |
+
raise ValueError("Samples must have shape (b, t, c), (b, c, h, w) or (b, c, f, h, w)")
|
26 |
+
snr = (timesteps / (1 - timesteps)) ** 2
|
27 |
+
shift_snr = torch.log(snr) + 2 * math.log(m / n)
|
28 |
+
shifted_timesteps = torch.sigmoid(0.5 * shift_snr)
|
29 |
+
|
30 |
+
return shifted_timesteps
|
31 |
+
|
32 |
+
|
33 |
+
def time_shift(mu: float, sigma: float, t: Tensor):
|
34 |
+
return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)
|
35 |
+
|
36 |
+
|
37 |
+
def get_normal_shift(
|
38 |
+
n_tokens: int,
|
39 |
+
min_tokens: int = 1024,
|
40 |
+
max_tokens: int = 4096,
|
41 |
+
min_shift: float = 0.95,
|
42 |
+
max_shift: float = 2.05,
|
43 |
+
) -> Callable[[float], float]:
|
44 |
+
m = (max_shift - min_shift) / (max_tokens - min_tokens)
|
45 |
+
b = min_shift - m * min_tokens
|
46 |
+
return m * n_tokens + b
|
47 |
+
|
48 |
+
|
49 |
+
def sd3_resolution_dependent_timestep_shift(samples: Tensor, timesteps: Tensor) -> Tensor:
|
50 |
+
"""
|
51 |
+
Shifts the timestep schedule as a function of the generated resolution.
|
52 |
+
|
53 |
+
In the SD3 paper, the authors empirically how to shift the timesteps based on the resolution of the target images.
|
54 |
+
For more details: https://arxiv.org/pdf/2403.03206
|
55 |
+
|
56 |
+
In Flux they later propose a more dynamic resolution dependent timestep shift, see:
|
57 |
+
https://github.com/black-forest-labs/flux/blob/87f6fff727a377ea1c378af692afb41ae84cbe04/src/flux/sampling.py#L66
|
58 |
+
|
59 |
+
|
60 |
+
Args:
|
61 |
+
samples (Tensor): A batch of samples with shape (batch_size, channels, height, width) or
|
62 |
+
(batch_size, channels, frame, height, width).
|
63 |
+
timesteps (Tensor): A batch of timesteps with shape (batch_size,).
|
64 |
+
|
65 |
+
Returns:
|
66 |
+
Tensor: The shifted timesteps.
|
67 |
+
"""
|
68 |
+
if len(samples.shape) == 3:
|
69 |
+
_, m, _ = samples.shape
|
70 |
+
elif len(samples.shape) in [4, 5]:
|
71 |
+
m = math.prod(samples.shape[2:])
|
72 |
+
else:
|
73 |
+
raise ValueError("Samples must have shape (b, t, c), (b, c, h, w) or (b, c, f, h, w)")
|
74 |
+
|
75 |
+
shift = get_normal_shift(m)
|
76 |
+
return time_shift(shift, 1, timesteps)
|
77 |
+
|
78 |
+
|
79 |
+
class TimestepShifter(ABC):
|
80 |
+
@abstractmethod
|
81 |
+
def shift_timesteps(self, samples: Tensor, timesteps: Tensor) -> Tensor:
|
82 |
+
pass
|
83 |
+
|
84 |
+
|
85 |
+
@dataclass
|
86 |
+
class RectifiedFlowSchedulerOutput(BaseOutput):
|
87 |
+
"""
|
88 |
+
Output class for the scheduler's step function output.
|
89 |
+
|
90 |
+
Args:
|
91 |
+
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
|
92 |
+
Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
|
93 |
+
denoising loop.
|
94 |
+
pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
|
95 |
+
The predicted denoised sample (x_{0}) based on the model output from the current timestep.
|
96 |
+
`pred_original_sample` can be used to preview progress or for guidance.
|
97 |
+
"""
|
98 |
+
|
99 |
+
prev_sample: torch.FloatTensor
|
100 |
+
pred_original_sample: Optional[torch.FloatTensor] = None
|
101 |
+
|
102 |
+
|
103 |
+
class RectifiedFlowScheduler(SchedulerMixin, ConfigMixin, TimestepShifter):
|
104 |
+
order = 1
|
105 |
+
|
106 |
+
@register_to_config
|
107 |
+
def __init__(self, num_train_timesteps=1000, shifting: Optional[str] = None, base_resolution: int = 32**2):
|
108 |
+
super().__init__()
|
109 |
+
self.init_noise_sigma = 1.0
|
110 |
+
self.num_inference_steps = None
|
111 |
+
self.timesteps = self.sigmas = torch.linspace(1, 1 / num_train_timesteps, num_train_timesteps)
|
112 |
+
self.delta_timesteps = self.timesteps - torch.cat([self.timesteps[1:], torch.zeros_like(self.timesteps[-1:])])
|
113 |
+
self.shifting = shifting
|
114 |
+
self.base_resolution = base_resolution
|
115 |
+
|
116 |
+
def shift_timesteps(self, samples: Tensor, timesteps: Tensor) -> Tensor:
|
117 |
+
if self.shifting == "SD3":
|
118 |
+
return sd3_resolution_dependent_timestep_shift(samples, timesteps)
|
119 |
+
elif self.shifting == "SimpleDiffusion":
|
120 |
+
return simple_diffusion_resolution_dependent_timestep_shift(samples, timesteps, self.base_resolution)
|
121 |
+
return timesteps
|
122 |
+
|
123 |
+
def set_timesteps(self, num_inference_steps: int, samples: Tensor, device: Union[str, torch.device] = None):
|
124 |
+
"""
|
125 |
+
Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference.
|
126 |
+
|
127 |
+
Args:
|
128 |
+
num_inference_steps (`int`): The number of diffusion steps used when generating samples.
|
129 |
+
samples (`Tensor`): A batch of samples with shape.
|
130 |
+
device (`Union[str, torch.device]`, *optional*): The device to which the timesteps tensor will be moved.
|
131 |
+
"""
|
132 |
+
num_inference_steps = min(self.config.num_train_timesteps, num_inference_steps)
|
133 |
+
timesteps = torch.linspace(1, 1 / num_inference_steps, num_inference_steps).to(device)
|
134 |
+
self.timesteps = self.shift_timesteps(samples, timesteps)
|
135 |
+
self.delta_timesteps = self.timesteps - torch.cat([self.timesteps[1:], torch.zeros_like(self.timesteps[-1:])])
|
136 |
+
self.num_inference_steps = num_inference_steps
|
137 |
+
self.sigmas = self.timesteps
|
138 |
+
|
139 |
+
def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor:
|
140 |
+
# pylint: disable=unused-argument
|
141 |
+
"""
|
142 |
+
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
|
143 |
+
current timestep.
|
144 |
+
|
145 |
+
Args:
|
146 |
+
sample (`torch.FloatTensor`): input sample
|
147 |
+
timestep (`int`, optional): current timestep
|
148 |
+
|
149 |
+
Returns:
|
150 |
+
`torch.FloatTensor`: scaled input sample
|
151 |
+
"""
|
152 |
+
return sample
|
153 |
+
|
154 |
+
def step(
|
155 |
+
self,
|
156 |
+
model_output: torch.FloatTensor,
|
157 |
+
timestep: torch.FloatTensor,
|
158 |
+
sample: torch.FloatTensor,
|
159 |
+
eta: float = 0.0,
|
160 |
+
use_clipped_model_output: bool = False,
|
161 |
+
generator=None,
|
162 |
+
variance_noise: Optional[torch.FloatTensor] = None,
|
163 |
+
return_dict: bool = True,
|
164 |
+
) -> Union[RectifiedFlowSchedulerOutput, Tuple]:
|
165 |
+
# pylint: disable=unused-argument
|
166 |
+
"""
|
167 |
+
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
|
168 |
+
process from the learned model outputs (most often the predicted noise).
|
169 |
+
|
170 |
+
Args:
|
171 |
+
model_output (`torch.FloatTensor`):
|
172 |
+
The direct output from learned diffusion model.
|
173 |
+
timestep (`float`):
|
174 |
+
The current discrete timestep in the diffusion chain.
|
175 |
+
sample (`torch.FloatTensor`):
|
176 |
+
A current instance of a sample created by the diffusion process.
|
177 |
+
eta (`float`):
|
178 |
+
The weight of noise for added noise in diffusion step.
|
179 |
+
use_clipped_model_output (`bool`, defaults to `False`):
|
180 |
+
If `True`, computes "corrected" `model_output` from the clipped predicted original sample. Necessary
|
181 |
+
because predicted original sample is clipped to [-1, 1] when `self.config.clip_sample` is `True`. If no
|
182 |
+
clipping has happened, "corrected" `model_output` would coincide with the one provided as input and
|
183 |
+
`use_clipped_model_output` has no effect.
|
184 |
+
generator (`torch.Generator`, *optional*):
|
185 |
+
A random number generator.
|
186 |
+
variance_noise (`torch.FloatTensor`):
|
187 |
+
Alternative to generating noise with `generator` by directly providing the noise for the variance
|
188 |
+
itself. Useful for methods such as [`CycleDiffusion`].
|
189 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
190 |
+
Whether or not to return a [`~schedulers.scheduling_ddim.DDIMSchedulerOutput`] or `tuple`.
|
191 |
+
|
192 |
+
Returns:
|
193 |
+
[`~schedulers.scheduling_utils.RectifiedFlowSchedulerOutput`] or `tuple`:
|
194 |
+
If return_dict is `True`, [`~schedulers.rf_scheduler.RectifiedFlowSchedulerOutput`] is returned,
|
195 |
+
otherwise a tuple is returned where the first element is the sample tensor.
|
196 |
+
"""
|
197 |
+
if self.num_inference_steps is None:
|
198 |
+
raise ValueError(
|
199 |
+
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
|
200 |
+
)
|
201 |
+
|
202 |
+
current_index = (self.timesteps - timestep).abs().argmin()
|
203 |
+
dt = self.delta_timesteps.gather(0, current_index.unsqueeze(0))
|
204 |
+
|
205 |
+
prev_sample = sample - dt * model_output
|
206 |
+
|
207 |
+
if not return_dict:
|
208 |
+
return (prev_sample,)
|
209 |
+
|
210 |
+
return RectifiedFlowSchedulerOutput(prev_sample=prev_sample)
|
211 |
+
|
212 |
+
def add_noise(
|
213 |
+
self,
|
214 |
+
original_samples: torch.FloatTensor,
|
215 |
+
noise: torch.FloatTensor,
|
216 |
+
timesteps: torch.FloatTensor,
|
217 |
+
) -> torch.FloatTensor:
|
218 |
+
sigmas = timesteps
|
219 |
+
sigmas = append_dims(sigmas, original_samples.ndim)
|
220 |
+
alphas = 1 - sigmas
|
221 |
+
noisy_samples = alphas * original_samples + sigmas * noise
|
222 |
+
return noisy_samples
|
transformer/transformer3d.py
ADDED
@@ -0,0 +1,436 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from: https://github.com/huggingface/diffusers/blob/v0.26.3/src/diffusers/models/transformers/transformer_2d.py
|
2 |
+
import math
|
3 |
+
from dataclasses import dataclass
|
4 |
+
from typing import Any, Dict, List, Optional
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
8 |
+
from diffusers.models.embeddings import PixArtAlphaTextProjection
|
9 |
+
from diffusers.models.modeling_utils import ModelMixin
|
10 |
+
from diffusers.models.normalization import AdaLayerNormSingle
|
11 |
+
from diffusers.utils import BaseOutput, is_torch_version
|
12 |
+
from torch import nn
|
13 |
+
|
14 |
+
from txt2img.common import dist_util, logger
|
15 |
+
from txt2img.config.weights_init_config import WeightsInitConfig, WeightsInitModeName
|
16 |
+
from txt2img.diffusion.models.pixart.attention import BasicTransformerBlock
|
17 |
+
from txt2img.diffusion.models.pixart.embeddings import get_3d_sincos_pos_embed
|
18 |
+
|
19 |
+
|
20 |
+
@dataclass
|
21 |
+
class Transformer3DModelOutput(BaseOutput):
|
22 |
+
"""
|
23 |
+
The output of [`Transformer2DModel`].
|
24 |
+
|
25 |
+
Args:
|
26 |
+
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete):
|
27 |
+
The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability
|
28 |
+
distributions for the unnoised latent pixels.
|
29 |
+
"""
|
30 |
+
|
31 |
+
sample: torch.FloatTensor
|
32 |
+
|
33 |
+
|
34 |
+
class Transformer3DModel(ModelMixin, ConfigMixin):
|
35 |
+
_supports_gradient_checkpointing = True
|
36 |
+
|
37 |
+
@register_to_config
|
38 |
+
def __init__(
|
39 |
+
self,
|
40 |
+
num_attention_heads: int = 16,
|
41 |
+
attention_head_dim: int = 88,
|
42 |
+
in_channels: Optional[int] = None,
|
43 |
+
out_channels: Optional[int] = None,
|
44 |
+
num_layers: int = 1,
|
45 |
+
dropout: float = 0.0,
|
46 |
+
norm_num_groups: int = 32,
|
47 |
+
cross_attention_dim: Optional[int] = None,
|
48 |
+
attention_bias: bool = False,
|
49 |
+
num_vector_embeds: Optional[int] = None,
|
50 |
+
activation_fn: str = "geglu",
|
51 |
+
num_embeds_ada_norm: Optional[int] = None,
|
52 |
+
use_linear_projection: bool = False,
|
53 |
+
only_cross_attention: bool = False,
|
54 |
+
double_self_attention: bool = False,
|
55 |
+
upcast_attention: bool = False,
|
56 |
+
adaptive_norm: str = "single_scale_shift", # 'single_scale_shift' or 'single_scale'
|
57 |
+
standardization_norm: str = "layer_norm", # 'layer_norm' or 'rms_norm'
|
58 |
+
norm_elementwise_affine: bool = True,
|
59 |
+
norm_eps: float = 1e-5,
|
60 |
+
attention_type: str = "default",
|
61 |
+
caption_channels: int = None,
|
62 |
+
project_to_2d_pos: bool = False,
|
63 |
+
use_tpu_flash_attention: bool = False, # if True uses the TPU attention offload ('flash attention')
|
64 |
+
qk_norm: Optional[str] = None,
|
65 |
+
positional_embedding_type: str = "absolute",
|
66 |
+
positional_embedding_theta: Optional[float] = None,
|
67 |
+
positional_embedding_max_pos: Optional[List[int]] = None,
|
68 |
+
timestep_scale_multiplier: Optional[float] = None,
|
69 |
+
):
|
70 |
+
super().__init__()
|
71 |
+
self.use_tpu_flash_attention = use_tpu_flash_attention # FIXME: push config down to the attention modules
|
72 |
+
self.use_linear_projection = use_linear_projection
|
73 |
+
self.num_attention_heads = num_attention_heads
|
74 |
+
self.attention_head_dim = attention_head_dim
|
75 |
+
inner_dim = num_attention_heads * attention_head_dim
|
76 |
+
self.inner_dim = inner_dim
|
77 |
+
|
78 |
+
self.project_to_2d_pos = project_to_2d_pos
|
79 |
+
|
80 |
+
self.patchify_proj = nn.Linear(in_channels, inner_dim, bias=True)
|
81 |
+
|
82 |
+
self.positional_embedding_type = positional_embedding_type
|
83 |
+
self.positional_embedding_theta = positional_embedding_theta
|
84 |
+
self.positional_embedding_max_pos = positional_embedding_max_pos
|
85 |
+
self.use_rope = self.positional_embedding_type == "rope"
|
86 |
+
self.timestep_scale_multiplier = timestep_scale_multiplier
|
87 |
+
|
88 |
+
if self.positional_embedding_type == "absolute":
|
89 |
+
embed_dim_3d = math.ceil((inner_dim / 2) * 3) if project_to_2d_pos else inner_dim
|
90 |
+
if self.project_to_2d_pos:
|
91 |
+
self.to_2d_proj = torch.nn.Linear(embed_dim_3d, inner_dim, bias=False)
|
92 |
+
self._init_to_2d_proj_weights(self.to_2d_proj)
|
93 |
+
elif self.positional_embedding_type == "rope":
|
94 |
+
if positional_embedding_theta is None:
|
95 |
+
raise ValueError(
|
96 |
+
"If `positional_embedding_type` type is rope, `positional_embedding_theta` must also be defined"
|
97 |
+
)
|
98 |
+
if positional_embedding_max_pos is None:
|
99 |
+
raise ValueError(
|
100 |
+
"If `positional_embedding_type` type is rope, `positional_embedding_max_pos` must also be defined"
|
101 |
+
)
|
102 |
+
|
103 |
+
# 3. Define transformers blocks
|
104 |
+
self.transformer_blocks = nn.ModuleList(
|
105 |
+
[
|
106 |
+
BasicTransformerBlock(
|
107 |
+
inner_dim,
|
108 |
+
num_attention_heads,
|
109 |
+
attention_head_dim,
|
110 |
+
dropout=dropout,
|
111 |
+
cross_attention_dim=cross_attention_dim,
|
112 |
+
activation_fn=activation_fn,
|
113 |
+
num_embeds_ada_norm=num_embeds_ada_norm,
|
114 |
+
attention_bias=attention_bias,
|
115 |
+
only_cross_attention=only_cross_attention,
|
116 |
+
double_self_attention=double_self_attention,
|
117 |
+
upcast_attention=upcast_attention,
|
118 |
+
adaptive_norm=adaptive_norm,
|
119 |
+
standardization_norm=standardization_norm,
|
120 |
+
norm_elementwise_affine=norm_elementwise_affine,
|
121 |
+
norm_eps=norm_eps,
|
122 |
+
attention_type=attention_type,
|
123 |
+
use_tpu_flash_attention=use_tpu_flash_attention,
|
124 |
+
qk_norm=qk_norm,
|
125 |
+
use_rope=self.use_rope,
|
126 |
+
)
|
127 |
+
for d in range(num_layers)
|
128 |
+
]
|
129 |
+
)
|
130 |
+
|
131 |
+
# 4. Define output layers
|
132 |
+
self.out_channels = in_channels if out_channels is None else out_channels
|
133 |
+
self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6)
|
134 |
+
self.scale_shift_table = nn.Parameter(torch.randn(2, inner_dim) / inner_dim**0.5)
|
135 |
+
self.proj_out = nn.Linear(inner_dim, self.out_channels)
|
136 |
+
|
137 |
+
# 5. PixArt-Alpha blocks.
|
138 |
+
self.adaln_single = AdaLayerNormSingle(inner_dim, use_additional_conditions=False)
|
139 |
+
if adaptive_norm == "single_scale":
|
140 |
+
# Use 4 channels instead of the 6 for the PixArt-Alpha scale + shift ada norm.
|
141 |
+
self.adaln_single.linear = nn.Linear(inner_dim, 4 * inner_dim, bias=True)
|
142 |
+
|
143 |
+
self.caption_projection = None
|
144 |
+
if caption_channels is not None:
|
145 |
+
self.caption_projection = PixArtAlphaTextProjection(in_features=caption_channels, hidden_size=inner_dim)
|
146 |
+
|
147 |
+
self.gradient_checkpointing = False
|
148 |
+
|
149 |
+
def set_use_tpu_flash_attention(self):
|
150 |
+
r"""
|
151 |
+
Function sets the flag in this object and propagates down the children. The flag will enforce the usage of TPU
|
152 |
+
attention kernel.
|
153 |
+
"""
|
154 |
+
logger.info(" ENABLE TPU FLASH ATTENTION -> TRUE")
|
155 |
+
# if using TPU -> configure components to use TPU flash attention
|
156 |
+
if dist_util.acceleration_type() == dist_util.AccelerationType.TPU:
|
157 |
+
self.use_tpu_flash_attention = True
|
158 |
+
# push config down to the attention modules
|
159 |
+
for block in self.transformer_blocks:
|
160 |
+
block.set_use_tpu_flash_attention()
|
161 |
+
|
162 |
+
def initialize(self, weights_init: WeightsInitConfig):
|
163 |
+
if weights_init.mode != WeightsInitModeName.PixArt and weights_init.mode != WeightsInitModeName.Xora:
|
164 |
+
return
|
165 |
+
|
166 |
+
def _basic_init(module):
|
167 |
+
if isinstance(module, nn.Linear):
|
168 |
+
torch.nn.init.xavier_uniform_(module.weight)
|
169 |
+
if module.bias is not None:
|
170 |
+
nn.init.constant_(module.bias, 0)
|
171 |
+
|
172 |
+
self.apply(_basic_init)
|
173 |
+
|
174 |
+
# Initialize timestep embedding MLP:
|
175 |
+
nn.init.normal_(self.adaln_single.emb.timestep_embedder.linear_1.weight, std=weights_init.embedding_std)
|
176 |
+
nn.init.normal_(self.adaln_single.emb.timestep_embedder.linear_2.weight, std=weights_init.embedding_std)
|
177 |
+
nn.init.normal_(self.adaln_single.linear.weight, std=weights_init.embedding_std)
|
178 |
+
|
179 |
+
if hasattr(self.adaln_single.emb, "resolution_embedder"):
|
180 |
+
nn.init.normal_(self.adaln_single.emb.resolution_embedder.linear_1.weight, std=weights_init.embedding_std)
|
181 |
+
nn.init.normal_(self.adaln_single.emb.resolution_embedder.linear_2.weight, std=weights_init.embedding_std)
|
182 |
+
if hasattr(self.adaln_single.emb, "aspect_ratio_embedder"):
|
183 |
+
nn.init.normal_(self.adaln_single.emb.aspect_ratio_embedder.linear_1.weight, std=weights_init.embedding_std)
|
184 |
+
nn.init.normal_(self.adaln_single.emb.aspect_ratio_embedder.linear_2.weight, std=weights_init.embedding_std)
|
185 |
+
|
186 |
+
# Initialize caption embedding MLP:
|
187 |
+
nn.init.normal_(self.caption_projection.linear_1.weight, std=weights_init.embedding_std)
|
188 |
+
nn.init.normal_(self.caption_projection.linear_1.weight, std=weights_init.embedding_std)
|
189 |
+
|
190 |
+
# Zero-out adaLN modulation layers in PixArt blocks:
|
191 |
+
for block in self.transformer_blocks:
|
192 |
+
if weights_init.mode == WeightsInitModeName.Xora:
|
193 |
+
nn.init.constant_(block.attn1.to_out[0].weight, 0)
|
194 |
+
nn.init.constant_(block.attn1.to_out[0].bias, 0)
|
195 |
+
|
196 |
+
nn.init.constant_(block.attn2.to_out[0].weight, 0)
|
197 |
+
nn.init.constant_(block.attn2.to_out[0].bias, 0)
|
198 |
+
|
199 |
+
if weights_init.mode == WeightsInitModeName.Xora:
|
200 |
+
nn.init.constant_(block.ff.net[2].weight, 0)
|
201 |
+
nn.init.constant_(block.ff.net[2].bias, 0)
|
202 |
+
|
203 |
+
# Zero-out output layers:
|
204 |
+
nn.init.constant_(self.proj_out.weight, 0)
|
205 |
+
nn.init.constant_(self.proj_out.bias, 0)
|
206 |
+
|
207 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
208 |
+
if hasattr(module, "gradient_checkpointing"):
|
209 |
+
module.gradient_checkpointing = value
|
210 |
+
|
211 |
+
@staticmethod
|
212 |
+
def _init_to_2d_proj_weights(linear_layer):
|
213 |
+
input_features = linear_layer.weight.data.size(1)
|
214 |
+
output_features = linear_layer.weight.data.size(0)
|
215 |
+
|
216 |
+
# Start with a zero matrix
|
217 |
+
identity_like = torch.zeros((output_features, input_features))
|
218 |
+
|
219 |
+
# Fill the diagonal with 1's as much as possible
|
220 |
+
min_features = min(output_features, input_features)
|
221 |
+
identity_like[:min_features, :min_features] = torch.eye(min_features)
|
222 |
+
linear_layer.weight.data = identity_like.to(linear_layer.weight.data.device)
|
223 |
+
|
224 |
+
def get_fractional_positions(self, indices_grid):
|
225 |
+
fractional_positions = torch.stack(
|
226 |
+
[indices_grid[:, i] / self.positional_embedding_max_pos[i] for i in range(3)], dim=-1
|
227 |
+
)
|
228 |
+
return fractional_positions
|
229 |
+
|
230 |
+
def precompute_freqs_cis(self, indices_grid, spacing="exp"):
|
231 |
+
dtype = self.dtype
|
232 |
+
dim = self.inner_dim
|
233 |
+
theta = self.positional_embedding_theta
|
234 |
+
|
235 |
+
fractional_positions = self.get_fractional_positions(indices_grid)
|
236 |
+
|
237 |
+
start = 1
|
238 |
+
end = theta
|
239 |
+
device = fractional_positions.device
|
240 |
+
if spacing == "exp":
|
241 |
+
indices = theta ** (
|
242 |
+
torch.linspace(math.log(start, theta), math.log(end, theta), dim // 6, device=device, dtype=dtype)
|
243 |
+
)
|
244 |
+
indices = indices.to(dtype=dtype)
|
245 |
+
elif spacing == "exp_2":
|
246 |
+
indices = 1.0 / theta ** (torch.arange(0, dim, 6, device=device) / dim)
|
247 |
+
indices = indices.to(dtype=dtype)
|
248 |
+
elif spacing == "linear":
|
249 |
+
indices = torch.linspace(start, end, dim // 6, device=device, dtype=dtype)
|
250 |
+
elif spacing == "sqrt":
|
251 |
+
indices = torch.linspace(start**2, end**2, dim // 6, device=device, dtype=dtype).sqrt()
|
252 |
+
|
253 |
+
indices = indices * math.pi / 2
|
254 |
+
|
255 |
+
if spacing == "exp_2":
|
256 |
+
freqs = (indices * fractional_positions.unsqueeze(-1)).transpose(-1, -2).flatten(2)
|
257 |
+
else:
|
258 |
+
freqs = (indices * (fractional_positions.unsqueeze(-1) * 2 - 1)).transpose(-1, -2).flatten(2)
|
259 |
+
|
260 |
+
cos_freq = freqs.cos().repeat_interleave(2, dim=-1)
|
261 |
+
sin_freq = freqs.sin().repeat_interleave(2, dim=-1)
|
262 |
+
if dim % 6 != 0:
|
263 |
+
cos_padding = torch.ones_like(cos_freq[:, :, : dim % 6])
|
264 |
+
sin_padding = torch.zeros_like(cos_freq[:, :, : dim % 6])
|
265 |
+
cos_freq = torch.cat([cos_padding, cos_freq], dim=-1)
|
266 |
+
sin_freq = torch.cat([sin_padding, sin_freq], dim=-1)
|
267 |
+
return cos_freq, sin_freq
|
268 |
+
|
269 |
+
def forward(
|
270 |
+
self,
|
271 |
+
hidden_states: torch.Tensor,
|
272 |
+
indices_grid: torch.Tensor,
|
273 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
274 |
+
timestep: Optional[torch.LongTensor] = None,
|
275 |
+
class_labels: Optional[torch.LongTensor] = None,
|
276 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
277 |
+
attention_mask: Optional[torch.Tensor] = None,
|
278 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
279 |
+
return_dict: bool = True,
|
280 |
+
):
|
281 |
+
"""
|
282 |
+
The [`Transformer2DModel`] forward method.
|
283 |
+
|
284 |
+
Args:
|
285 |
+
hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous):
|
286 |
+
Input `hidden_states`.
|
287 |
+
indices_grid (`torch.LongTensor` of shape `(batch size, 3, num latent pixels)`):
|
288 |
+
encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
|
289 |
+
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
|
290 |
+
self-attention.
|
291 |
+
timestep ( `torch.LongTensor`, *optional*):
|
292 |
+
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
|
293 |
+
class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*):
|
294 |
+
Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in
|
295 |
+
`AdaLayerZeroNorm`.
|
296 |
+
cross_attention_kwargs ( `Dict[str, Any]`, *optional*):
|
297 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
298 |
+
`self.processor` in
|
299 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
300 |
+
attention_mask ( `torch.Tensor`, *optional*):
|
301 |
+
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
|
302 |
+
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
|
303 |
+
negative values to the attention scores corresponding to "discard" tokens.
|
304 |
+
encoder_attention_mask ( `torch.Tensor`, *optional*):
|
305 |
+
Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:
|
306 |
+
|
307 |
+
* Mask `(batch, sequence_length)` True = keep, False = discard.
|
308 |
+
* Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.
|
309 |
+
|
310 |
+
If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
|
311 |
+
above. This bias will be added to the cross-attention scores.
|
312 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
313 |
+
Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
314 |
+
tuple.
|
315 |
+
|
316 |
+
Returns:
|
317 |
+
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
318 |
+
`tuple` where the first element is the sample tensor.
|
319 |
+
"""
|
320 |
+
# for tpu attention offload 2d token masks are used. No need to transform.
|
321 |
+
if not self.use_tpu_flash_attention:
|
322 |
+
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
|
323 |
+
# we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
|
324 |
+
# we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
|
325 |
+
# expects mask of shape:
|
326 |
+
# [batch, key_tokens]
|
327 |
+
# adds singleton query_tokens dimension:
|
328 |
+
# [batch, 1, key_tokens]
|
329 |
+
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
330 |
+
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
331 |
+
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
332 |
+
if attention_mask is not None and attention_mask.ndim == 2:
|
333 |
+
# assume that mask is expressed as:
|
334 |
+
# (1 = keep, 0 = discard)
|
335 |
+
# convert mask into a bias that can be added to attention scores:
|
336 |
+
# (keep = +0, discard = -10000.0)
|
337 |
+
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
|
338 |
+
attention_mask = attention_mask.unsqueeze(1)
|
339 |
+
|
340 |
+
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
341 |
+
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
|
342 |
+
encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0
|
343 |
+
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
344 |
+
|
345 |
+
# 1. Input
|
346 |
+
hidden_states = self.patchify_proj(hidden_states)
|
347 |
+
|
348 |
+
if self.timestep_scale_multiplier:
|
349 |
+
timestep = self.timestep_scale_multiplier * timestep
|
350 |
+
|
351 |
+
if self.positional_embedding_type == "absolute":
|
352 |
+
pos_embed_3d = self.get_absolute_pos_embed(indices_grid).to(hidden_states.device)
|
353 |
+
if self.project_to_2d_pos:
|
354 |
+
pos_embed = self.to_2d_proj(pos_embed_3d)
|
355 |
+
hidden_states = (hidden_states + pos_embed).to(hidden_states.dtype)
|
356 |
+
freqs_cis = None
|
357 |
+
elif self.positional_embedding_type == "rope":
|
358 |
+
freqs_cis = self.precompute_freqs_cis(indices_grid)
|
359 |
+
|
360 |
+
batch_size = hidden_states.shape[0]
|
361 |
+
timestep, embedded_timestep = self.adaln_single(
|
362 |
+
timestep.flatten(),
|
363 |
+
{"resolution": None, "aspect_ratio": None},
|
364 |
+
batch_size=batch_size,
|
365 |
+
hidden_dtype=hidden_states.dtype,
|
366 |
+
)
|
367 |
+
# Second dimension is 1 or number of tokens (if timestep_per_token)
|
368 |
+
timestep = timestep.view(batch_size, -1, timestep.shape[-1])
|
369 |
+
embedded_timestep = embedded_timestep.view(batch_size, -1, embedded_timestep.shape[-1])
|
370 |
+
|
371 |
+
# 2. Blocks
|
372 |
+
if self.caption_projection is not None:
|
373 |
+
batch_size = hidden_states.shape[0]
|
374 |
+
encoder_hidden_states = self.caption_projection(encoder_hidden_states)
|
375 |
+
encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1])
|
376 |
+
|
377 |
+
for block in self.transformer_blocks:
|
378 |
+
if self.training and self.gradient_checkpointing:
|
379 |
+
|
380 |
+
def create_custom_forward(module, return_dict=None):
|
381 |
+
def custom_forward(*inputs):
|
382 |
+
if return_dict is not None:
|
383 |
+
return module(*inputs, return_dict=return_dict)
|
384 |
+
else:
|
385 |
+
return module(*inputs)
|
386 |
+
|
387 |
+
return custom_forward
|
388 |
+
|
389 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
390 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
391 |
+
create_custom_forward(block),
|
392 |
+
hidden_states,
|
393 |
+
freqs_cis,
|
394 |
+
attention_mask,
|
395 |
+
encoder_hidden_states,
|
396 |
+
encoder_attention_mask,
|
397 |
+
timestep,
|
398 |
+
cross_attention_kwargs,
|
399 |
+
class_labels,
|
400 |
+
**ckpt_kwargs,
|
401 |
+
)
|
402 |
+
else:
|
403 |
+
hidden_states = block(
|
404 |
+
hidden_states,
|
405 |
+
freqs_cis=freqs_cis,
|
406 |
+
attention_mask=attention_mask,
|
407 |
+
encoder_hidden_states=encoder_hidden_states,
|
408 |
+
encoder_attention_mask=encoder_attention_mask,
|
409 |
+
timestep=timestep,
|
410 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
411 |
+
class_labels=class_labels,
|
412 |
+
)
|
413 |
+
|
414 |
+
# 3. Output
|
415 |
+
scale_shift_values = self.scale_shift_table[None, None] + embedded_timestep[:, :, None]
|
416 |
+
shift, scale = scale_shift_values[:, :, 0], scale_shift_values[:, :, 1]
|
417 |
+
hidden_states = self.norm_out(hidden_states)
|
418 |
+
# Modulation
|
419 |
+
hidden_states = hidden_states * (1 + scale) + shift
|
420 |
+
hidden_states = self.proj_out(hidden_states)
|
421 |
+
if not return_dict:
|
422 |
+
return (hidden_states,)
|
423 |
+
|
424 |
+
return Transformer3DModelOutput(sample=hidden_states)
|
425 |
+
|
426 |
+
def get_absolute_pos_embed(self, grid):
|
427 |
+
grid_np = grid[0].cpu().numpy()
|
428 |
+
embed_dim_3d = math.ceil((self.inner_dim / 2) * 3) if self.project_to_2d_pos else self.inner_dim
|
429 |
+
pos_embed = get_3d_sincos_pos_embed( # (f h w)
|
430 |
+
embed_dim_3d,
|
431 |
+
grid_np,
|
432 |
+
h=int(max(grid_np[1]) + 1),
|
433 |
+
w=int(max(grid_np[2]) + 1),
|
434 |
+
f=int(max(grid_np[0] + 1)),
|
435 |
+
)
|
436 |
+
return torch.from_numpy(pos_embed).float().unsqueeze(0)
|
vae/causal_video_encoder.py
ADDED
@@ -0,0 +1,764 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
from functools import partial
|
4 |
+
from types import SimpleNamespace
|
5 |
+
from typing import Any, Mapping, Optional, Tuple, Union, List
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import numpy as np
|
9 |
+
from einops import rearrange
|
10 |
+
from torch import nn
|
11 |
+
|
12 |
+
from txt2img.common import logger
|
13 |
+
from txt2img.vae.layers.conv_nd_factory import make_conv_nd, make_linear_nd
|
14 |
+
from txt2img.vae.layers.pixel_norm import PixelNorm
|
15 |
+
from txt2img.vae.vae import AutoencoderKLWrapper
|
16 |
+
|
17 |
+
|
18 |
+
class CausalVideoAutoencoder(AutoencoderKLWrapper):
|
19 |
+
@classmethod
|
20 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], *args, **kwargs):
|
21 |
+
config_local_path = pretrained_model_name_or_path / "config.json"
|
22 |
+
config = cls.load_config(config_local_path, **kwargs)
|
23 |
+
video_vae = cls.from_config(config)
|
24 |
+
video_vae.to(kwargs["torch_dtype"])
|
25 |
+
|
26 |
+
model_local_path = pretrained_model_name_or_path / "autoencoder.pth"
|
27 |
+
ckpt_state_dict = torch.load(model_local_path, map_location=torch.device("cpu"))
|
28 |
+
video_vae.load_state_dict(ckpt_state_dict)
|
29 |
+
|
30 |
+
statistics_local_path = pretrained_model_name_or_path / "per_channel_statistics.json"
|
31 |
+
if statistics_local_path.exists():
|
32 |
+
with open(statistics_local_path, "r") as file:
|
33 |
+
data = json.load(file)
|
34 |
+
transposed_data = list(zip(*data["data"]))
|
35 |
+
data_dict = {col: torch.tensor(vals) for col, vals in zip(data["columns"], transposed_data)}
|
36 |
+
video_vae.register_buffer("std_of_means", data_dict["std-of-means"])
|
37 |
+
video_vae.register_buffer(
|
38 |
+
"mean_of_means", data_dict.get("mean-of-means", torch.zeros_like(data_dict["std-of-means"]))
|
39 |
+
)
|
40 |
+
|
41 |
+
return video_vae
|
42 |
+
|
43 |
+
@staticmethod
|
44 |
+
def from_config(config):
|
45 |
+
assert config["_class_name"] == "CausalVideoAutoencoder", "config must have _class_name=CausalVideoAutoencoder"
|
46 |
+
if isinstance(config["dims"], list):
|
47 |
+
config["dims"] = tuple(config["dims"])
|
48 |
+
|
49 |
+
assert config["dims"] in [2, 3, (2, 1)], "dims must be 2, 3 or (2, 1)"
|
50 |
+
|
51 |
+
double_z = config.get("double_z", True)
|
52 |
+
latent_log_var = config.get("latent_log_var", "per_channel" if double_z else "none")
|
53 |
+
use_quant_conv = config.get("use_quant_conv", True)
|
54 |
+
|
55 |
+
if use_quant_conv and latent_log_var == "uniform":
|
56 |
+
raise ValueError("uniform latent_log_var requires use_quant_conv=False")
|
57 |
+
|
58 |
+
encoder = Encoder(
|
59 |
+
dims=config["dims"],
|
60 |
+
in_channels=config.get("in_channels", 3),
|
61 |
+
out_channels=config["latent_channels"],
|
62 |
+
blocks=config["blocks"],
|
63 |
+
patch_size=config.get("patch_size", 1),
|
64 |
+
latent_log_var=latent_log_var,
|
65 |
+
norm_layer=config.get("norm_layer", "group_norm"),
|
66 |
+
)
|
67 |
+
|
68 |
+
decoder = Decoder(
|
69 |
+
dims=config["dims"],
|
70 |
+
in_channels=config["latent_channels"],
|
71 |
+
out_channels=config.get("out_channels", 3),
|
72 |
+
blocks=config["blocks"],
|
73 |
+
patch_size=config.get("patch_size", 1),
|
74 |
+
norm_layer=config.get("norm_layer", "group_norm"),
|
75 |
+
causal=config.get("causal_decoder", False),
|
76 |
+
)
|
77 |
+
|
78 |
+
dims = config["dims"]
|
79 |
+
return CausalVideoAutoencoder(
|
80 |
+
encoder=encoder,
|
81 |
+
decoder=decoder,
|
82 |
+
latent_channels=config["latent_channels"],
|
83 |
+
dims=dims,
|
84 |
+
use_quant_conv=use_quant_conv,
|
85 |
+
)
|
86 |
+
|
87 |
+
@property
|
88 |
+
def config(self):
|
89 |
+
return SimpleNamespace(
|
90 |
+
_class_name="CausalVideoAutoencoder",
|
91 |
+
dims=self.dims,
|
92 |
+
in_channels=self.encoder.conv_in.in_channels // self.encoder.patch_size**2,
|
93 |
+
out_channels=self.decoder.conv_out.out_channels // self.decoder.patch_size**2,
|
94 |
+
latent_channels=self.decoder.conv_in.in_channels,
|
95 |
+
blocks=self.encoder.blocks_desc,
|
96 |
+
scaling_factor=1.0,
|
97 |
+
norm_layer=self.encoder.norm_layer,
|
98 |
+
patch_size=self.encoder.patch_size,
|
99 |
+
latent_log_var=self.encoder.latent_log_var,
|
100 |
+
use_quant_conv=self.use_quant_conv,
|
101 |
+
causal_decoder=self.decoder.causal,
|
102 |
+
)
|
103 |
+
|
104 |
+
@property
|
105 |
+
def is_video_supported(self):
|
106 |
+
"""
|
107 |
+
Check if the model supports video inputs of shape (B, C, F, H, W). Otherwise, the model only supports 2D images.
|
108 |
+
"""
|
109 |
+
return self.dims != 2
|
110 |
+
|
111 |
+
@property
|
112 |
+
def spatial_downscale_factor(self):
|
113 |
+
return (
|
114 |
+
2 ** len([block for block in self.encoder.blocks_desc if block[0] in ["compress_space", "compress_all"]])
|
115 |
+
* self.encoder.patch_size
|
116 |
+
)
|
117 |
+
|
118 |
+
@property
|
119 |
+
def temporal_downscale_factor(self):
|
120 |
+
return 2 ** len([block for block in self.encoder.blocks_desc if block[0] in ["compress_time", "compress_all"]])
|
121 |
+
|
122 |
+
def to_json_string(self) -> str:
|
123 |
+
import json
|
124 |
+
|
125 |
+
return json.dumps(self.config.__dict__)
|
126 |
+
|
127 |
+
def load_state_dict(self, state_dict: Mapping[str, Any], strict: bool = True):
|
128 |
+
model_keys = set(name for name, _ in self.named_parameters())
|
129 |
+
|
130 |
+
key_mapping = {
|
131 |
+
".resnets.": ".res_blocks.",
|
132 |
+
"downsamplers.0": "downsample",
|
133 |
+
"upsamplers.0": "upsample",
|
134 |
+
}
|
135 |
+
|
136 |
+
converted_state_dict = {}
|
137 |
+
for key, value in state_dict.items():
|
138 |
+
for k, v in key_mapping.items():
|
139 |
+
key = key.replace(k, v)
|
140 |
+
|
141 |
+
if "norm" in key and key not in model_keys:
|
142 |
+
logger.info(f"Removing key {key} from state_dict as it is not present in the model")
|
143 |
+
continue
|
144 |
+
|
145 |
+
converted_state_dict[key] = value
|
146 |
+
|
147 |
+
super().load_state_dict(converted_state_dict, strict=strict)
|
148 |
+
|
149 |
+
def last_layer(self):
|
150 |
+
if hasattr(self.decoder, "conv_out"):
|
151 |
+
if isinstance(self.decoder.conv_out, nn.Sequential):
|
152 |
+
last_layer = self.decoder.conv_out[-1]
|
153 |
+
else:
|
154 |
+
last_layer = self.decoder.conv_out
|
155 |
+
else:
|
156 |
+
last_layer = self.decoder.layers[-1]
|
157 |
+
return last_layer
|
158 |
+
|
159 |
+
|
160 |
+
class Encoder(nn.Module):
|
161 |
+
r"""
|
162 |
+
The `Encoder` layer of a variational autoencoder that encodes its input into a latent representation.
|
163 |
+
|
164 |
+
Args:
|
165 |
+
dims (`int` or `Tuple[int, int]`, *optional*, defaults to 3):
|
166 |
+
The number of dimensions to use in convolutions.
|
167 |
+
in_channels (`int`, *optional*, defaults to 3):
|
168 |
+
The number of input channels.
|
169 |
+
out_channels (`int`, *optional*, defaults to 3):
|
170 |
+
The number of output channels.
|
171 |
+
blocks (`List[Tuple[str, int]]`, *optional*, defaults to `[("res_x", 1)]`):
|
172 |
+
The blocks to use. Each block is a tuple of the block name and the number of layers.
|
173 |
+
base_channels (`int`, *optional*, defaults to 128):
|
174 |
+
The number of output channels for the first convolutional layer.
|
175 |
+
norm_num_groups (`int`, *optional*, defaults to 32):
|
176 |
+
The number of groups for normalization.
|
177 |
+
patch_size (`int`, *optional*, defaults to 1):
|
178 |
+
The patch size to use. Should be a power of 2.
|
179 |
+
norm_layer (`str`, *optional*, defaults to `group_norm`):
|
180 |
+
The normalization layer to use. Can be either `group_norm` or `pixel_norm`.
|
181 |
+
latent_log_var (`str`, *optional*, defaults to `per_channel`):
|
182 |
+
The number of channels for the log variance. Can be either `per_channel`, `uniform`, or `none`.
|
183 |
+
"""
|
184 |
+
|
185 |
+
def __init__(
|
186 |
+
self,
|
187 |
+
dims: Union[int, Tuple[int, int]] = 3,
|
188 |
+
in_channels: int = 3,
|
189 |
+
out_channels: int = 3,
|
190 |
+
blocks: List[Tuple[str, int]] = [("res_x", 1)],
|
191 |
+
base_channels: int = 128,
|
192 |
+
norm_num_groups: int = 32,
|
193 |
+
patch_size: Union[int, Tuple[int]] = 1,
|
194 |
+
norm_layer: str = "group_norm", # group_norm, pixel_norm
|
195 |
+
latent_log_var: str = "per_channel",
|
196 |
+
):
|
197 |
+
super().__init__()
|
198 |
+
self.patch_size = patch_size
|
199 |
+
self.norm_layer = norm_layer
|
200 |
+
self.latent_channels = out_channels
|
201 |
+
self.latent_log_var = latent_log_var
|
202 |
+
self.blocks_desc = blocks
|
203 |
+
|
204 |
+
in_channels = in_channels * patch_size**2
|
205 |
+
output_channel = base_channels
|
206 |
+
|
207 |
+
self.conv_in = make_conv_nd(
|
208 |
+
dims=dims,
|
209 |
+
in_channels=in_channels,
|
210 |
+
out_channels=output_channel,
|
211 |
+
kernel_size=3,
|
212 |
+
stride=1,
|
213 |
+
padding=1,
|
214 |
+
causal=True,
|
215 |
+
)
|
216 |
+
|
217 |
+
self.down_blocks = nn.ModuleList([])
|
218 |
+
|
219 |
+
for block_name, num_layers in blocks:
|
220 |
+
input_channel = output_channel
|
221 |
+
|
222 |
+
if block_name == "res_x":
|
223 |
+
block = UNetMidBlock3D(
|
224 |
+
dims=dims,
|
225 |
+
in_channels=input_channel,
|
226 |
+
num_layers=num_layers,
|
227 |
+
resnet_eps=1e-6,
|
228 |
+
resnet_groups=norm_num_groups,
|
229 |
+
norm_layer=norm_layer,
|
230 |
+
)
|
231 |
+
elif block_name == "res_x_y":
|
232 |
+
output_channel = 2 * output_channel
|
233 |
+
block = ResnetBlock3D(
|
234 |
+
dims=dims,
|
235 |
+
in_channels=input_channel,
|
236 |
+
out_channels=output_channel,
|
237 |
+
eps=1e-6,
|
238 |
+
groups=norm_num_groups,
|
239 |
+
norm_layer=norm_layer,
|
240 |
+
)
|
241 |
+
elif block_name == "compress_time":
|
242 |
+
block = make_conv_nd(
|
243 |
+
dims=dims,
|
244 |
+
in_channels=input_channel,
|
245 |
+
out_channels=output_channel,
|
246 |
+
kernel_size=3,
|
247 |
+
stride=(2, 1, 1),
|
248 |
+
causal=True,
|
249 |
+
)
|
250 |
+
elif block_name == "compress_space":
|
251 |
+
block = make_conv_nd(
|
252 |
+
dims=dims,
|
253 |
+
in_channels=input_channel,
|
254 |
+
out_channels=output_channel,
|
255 |
+
kernel_size=3,
|
256 |
+
stride=(1, 2, 2),
|
257 |
+
causal=True,
|
258 |
+
)
|
259 |
+
elif block_name == "compress_all":
|
260 |
+
block = make_conv_nd(
|
261 |
+
dims=dims,
|
262 |
+
in_channels=input_channel,
|
263 |
+
out_channels=output_channel,
|
264 |
+
kernel_size=3,
|
265 |
+
stride=(2, 2, 2),
|
266 |
+
causal=True,
|
267 |
+
)
|
268 |
+
else:
|
269 |
+
raise ValueError(f"unknown block: {block_name}")
|
270 |
+
|
271 |
+
self.down_blocks.append(block)
|
272 |
+
|
273 |
+
# out
|
274 |
+
if norm_layer == "group_norm":
|
275 |
+
self.conv_norm_out = nn.GroupNorm(num_channels=output_channel, num_groups=norm_num_groups, eps=1e-6)
|
276 |
+
elif norm_layer == "pixel_norm":
|
277 |
+
self.conv_norm_out = PixelNorm()
|
278 |
+
elif norm_layer == "layer_norm":
|
279 |
+
self.conv_norm_out = LayerNorm(output_channel, eps=1e-6)
|
280 |
+
|
281 |
+
self.conv_act = nn.SiLU()
|
282 |
+
|
283 |
+
conv_out_channels = out_channels
|
284 |
+
if latent_log_var == "per_channel":
|
285 |
+
conv_out_channels *= 2
|
286 |
+
elif latent_log_var == "uniform":
|
287 |
+
conv_out_channels += 1
|
288 |
+
elif latent_log_var != "none":
|
289 |
+
raise ValueError(f"Invalid latent_log_var: {latent_log_var}")
|
290 |
+
self.conv_out = make_conv_nd(dims, output_channel, conv_out_channels, 3, padding=1, causal=True)
|
291 |
+
|
292 |
+
self.gradient_checkpointing = False
|
293 |
+
|
294 |
+
def forward(self, sample: torch.FloatTensor) -> torch.FloatTensor:
|
295 |
+
r"""The forward method of the `Encoder` class."""
|
296 |
+
|
297 |
+
sample = patchify(sample, patch_size_hw=self.patch_size, patch_size_t=1)
|
298 |
+
sample = self.conv_in(sample)
|
299 |
+
|
300 |
+
checkpoint_fn = (
|
301 |
+
partial(torch.utils.checkpoint.checkpoint, use_reentrant=False)
|
302 |
+
if self.gradient_checkpointing and self.training
|
303 |
+
else lambda x: x
|
304 |
+
)
|
305 |
+
|
306 |
+
for down_block in self.down_blocks:
|
307 |
+
sample = checkpoint_fn(down_block)(sample)
|
308 |
+
|
309 |
+
sample = self.conv_norm_out(sample)
|
310 |
+
sample = self.conv_act(sample)
|
311 |
+
sample = self.conv_out(sample)
|
312 |
+
|
313 |
+
if self.latent_log_var == "uniform":
|
314 |
+
last_channel = sample[:, -1:, ...]
|
315 |
+
num_dims = sample.dim()
|
316 |
+
|
317 |
+
if num_dims == 4:
|
318 |
+
# For shape (B, C, H, W)
|
319 |
+
repeated_last_channel = last_channel.repeat(1, sample.shape[1] - 2, 1, 1)
|
320 |
+
sample = torch.cat([sample, repeated_last_channel], dim=1)
|
321 |
+
elif num_dims == 5:
|
322 |
+
# For shape (B, C, F, H, W)
|
323 |
+
repeated_last_channel = last_channel.repeat(1, sample.shape[1] - 2, 1, 1, 1)
|
324 |
+
sample = torch.cat([sample, repeated_last_channel], dim=1)
|
325 |
+
else:
|
326 |
+
raise ValueError(f"Invalid input shape: {sample.shape}")
|
327 |
+
|
328 |
+
return sample
|
329 |
+
|
330 |
+
|
331 |
+
class Decoder(nn.Module):
|
332 |
+
r"""
|
333 |
+
The `Decoder` layer of a variational autoencoder that decodes its latent representation into an output sample.
|
334 |
+
|
335 |
+
Args:
|
336 |
+
dims (`int` or `Tuple[int, int]`, *optional*, defaults to 3):
|
337 |
+
The number of dimensions to use in convolutions.
|
338 |
+
in_channels (`int`, *optional*, defaults to 3):
|
339 |
+
The number of input channels.
|
340 |
+
out_channels (`int`, *optional*, defaults to 3):
|
341 |
+
The number of output channels.
|
342 |
+
blocks (`List[Tuple[str, int]]`, *optional*, defaults to `[("res_x", 1)]`):
|
343 |
+
The blocks to use. Each block is a tuple of the block name and the number of layers.
|
344 |
+
base_channels (`int`, *optional*, defaults to 128):
|
345 |
+
The number of output channels for the first convolutional layer.
|
346 |
+
norm_num_groups (`int`, *optional*, defaults to 32):
|
347 |
+
The number of groups for normalization.
|
348 |
+
patch_size (`int`, *optional*, defaults to 1):
|
349 |
+
The patch size to use. Should be a power of 2.
|
350 |
+
norm_layer (`str`, *optional*, defaults to `group_norm`):
|
351 |
+
The normalization layer to use. Can be either `group_norm` or `pixel_norm`.
|
352 |
+
causal (`bool`, *optional*, defaults to `True`):
|
353 |
+
Whether to use causal convolutions or not.
|
354 |
+
"""
|
355 |
+
|
356 |
+
def __init__(
|
357 |
+
self,
|
358 |
+
dims,
|
359 |
+
in_channels: int = 3,
|
360 |
+
out_channels: int = 3,
|
361 |
+
blocks: List[Tuple[str, int]] = [("res_x", 1)],
|
362 |
+
base_channels: int = 128,
|
363 |
+
layers_per_block: int = 2,
|
364 |
+
norm_num_groups: int = 32,
|
365 |
+
patch_size: int = 1,
|
366 |
+
norm_layer: str = "group_norm",
|
367 |
+
causal: bool = True,
|
368 |
+
):
|
369 |
+
super().__init__()
|
370 |
+
self.patch_size = patch_size
|
371 |
+
self.layers_per_block = layers_per_block
|
372 |
+
out_channels = out_channels * patch_size**2
|
373 |
+
num_channel_doubles = len([x for x in blocks if x[0] == "res_x_y"])
|
374 |
+
output_channel = base_channels * 2**num_channel_doubles
|
375 |
+
self.causal = causal
|
376 |
+
|
377 |
+
self.conv_in = make_conv_nd(
|
378 |
+
dims,
|
379 |
+
in_channels,
|
380 |
+
output_channel,
|
381 |
+
kernel_size=3,
|
382 |
+
stride=1,
|
383 |
+
padding=1,
|
384 |
+
causal=True,
|
385 |
+
)
|
386 |
+
|
387 |
+
self.up_blocks = nn.ModuleList([])
|
388 |
+
|
389 |
+
for block_name, num_layers in list(reversed(blocks)):
|
390 |
+
input_channel = output_channel
|
391 |
+
|
392 |
+
if block_name == "res_x":
|
393 |
+
block = UNetMidBlock3D(
|
394 |
+
dims=dims,
|
395 |
+
in_channels=input_channel,
|
396 |
+
num_layers=num_layers,
|
397 |
+
resnet_eps=1e-6,
|
398 |
+
resnet_groups=norm_num_groups,
|
399 |
+
norm_layer=norm_layer,
|
400 |
+
)
|
401 |
+
elif block_name == "res_x_y":
|
402 |
+
output_channel = output_channel // 2
|
403 |
+
block = ResnetBlock3D(
|
404 |
+
dims=dims,
|
405 |
+
in_channels=input_channel,
|
406 |
+
out_channels=output_channel,
|
407 |
+
eps=1e-6,
|
408 |
+
groups=norm_num_groups,
|
409 |
+
norm_layer=norm_layer,
|
410 |
+
)
|
411 |
+
elif block_name == "compress_time":
|
412 |
+
block = DepthToSpaceUpsample(dims=dims, in_channels=input_channel, stride=(2, 1, 1))
|
413 |
+
elif block_name == "compress_space":
|
414 |
+
block = DepthToSpaceUpsample(dims=dims, in_channels=input_channel, stride=(1, 2, 2))
|
415 |
+
elif block_name == "compress_all":
|
416 |
+
block = DepthToSpaceUpsample(dims=dims, in_channels=input_channel, stride=(2, 2, 2))
|
417 |
+
else:
|
418 |
+
raise ValueError(f"unknown layer: {block_name}")
|
419 |
+
|
420 |
+
self.up_blocks.append(block)
|
421 |
+
|
422 |
+
if norm_layer == "group_norm":
|
423 |
+
self.conv_norm_out = nn.GroupNorm(num_channels=output_channel, num_groups=norm_num_groups, eps=1e-6)
|
424 |
+
elif norm_layer == "pixel_norm":
|
425 |
+
self.conv_norm_out = PixelNorm()
|
426 |
+
elif norm_layer == "layer_norm":
|
427 |
+
self.conv_norm_out = LayerNorm(output_channel, eps=1e-6)
|
428 |
+
|
429 |
+
self.conv_act = nn.SiLU()
|
430 |
+
self.conv_out = make_conv_nd(dims, output_channel, out_channels, 3, padding=1, causal=True)
|
431 |
+
|
432 |
+
self.gradient_checkpointing = False
|
433 |
+
|
434 |
+
def forward(self, sample: torch.FloatTensor, target_shape) -> torch.FloatTensor:
|
435 |
+
r"""The forward method of the `Decoder` class."""
|
436 |
+
assert target_shape is not None, "target_shape must be provided"
|
437 |
+
|
438 |
+
sample = self.conv_in(sample, causal=self.causal)
|
439 |
+
|
440 |
+
upscale_dtype = next(iter(self.up_blocks.parameters())).dtype
|
441 |
+
|
442 |
+
checkpoint_fn = (
|
443 |
+
partial(torch.utils.checkpoint.checkpoint, use_reentrant=False)
|
444 |
+
if self.gradient_checkpointing and self.training
|
445 |
+
else lambda x: x
|
446 |
+
)
|
447 |
+
|
448 |
+
sample = sample.to(upscale_dtype)
|
449 |
+
|
450 |
+
for up_block in self.up_blocks:
|
451 |
+
sample = checkpoint_fn(up_block)(sample, causal=self.causal)
|
452 |
+
|
453 |
+
sample = self.conv_norm_out(sample)
|
454 |
+
sample = self.conv_act(sample)
|
455 |
+
sample = self.conv_out(sample, causal=self.causal)
|
456 |
+
|
457 |
+
sample = unpatchify(sample, patch_size_hw=self.patch_size, patch_size_t=1)
|
458 |
+
|
459 |
+
return sample
|
460 |
+
|
461 |
+
|
462 |
+
class UNetMidBlock3D(nn.Module):
|
463 |
+
"""
|
464 |
+
A 3D UNet mid-block [`UNetMidBlock3D`] with multiple residual blocks.
|
465 |
+
|
466 |
+
Args:
|
467 |
+
in_channels (`int`): The number of input channels.
|
468 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout rate.
|
469 |
+
num_layers (`int`, *optional*, defaults to 1): The number of residual blocks.
|
470 |
+
resnet_eps (`float`, *optional*, 1e-6 ): The epsilon value for the resnet blocks.
|
471 |
+
resnet_groups (`int`, *optional*, defaults to 32):
|
472 |
+
The number of groups to use in the group normalization layers of the resnet blocks.
|
473 |
+
|
474 |
+
Returns:
|
475 |
+
`torch.FloatTensor`: The output of the last residual block, which is a tensor of shape `(batch_size,
|
476 |
+
in_channels, height, width)`.
|
477 |
+
|
478 |
+
"""
|
479 |
+
|
480 |
+
def __init__(
|
481 |
+
self,
|
482 |
+
dims: Union[int, Tuple[int, int]],
|
483 |
+
in_channels: int,
|
484 |
+
dropout: float = 0.0,
|
485 |
+
num_layers: int = 1,
|
486 |
+
resnet_eps: float = 1e-6,
|
487 |
+
resnet_groups: int = 32,
|
488 |
+
norm_layer: str = "group_norm",
|
489 |
+
):
|
490 |
+
super().__init__()
|
491 |
+
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
|
492 |
+
|
493 |
+
self.res_blocks = nn.ModuleList(
|
494 |
+
[
|
495 |
+
ResnetBlock3D(
|
496 |
+
dims=dims,
|
497 |
+
in_channels=in_channels,
|
498 |
+
out_channels=in_channels,
|
499 |
+
eps=resnet_eps,
|
500 |
+
groups=resnet_groups,
|
501 |
+
dropout=dropout,
|
502 |
+
norm_layer=norm_layer,
|
503 |
+
)
|
504 |
+
for _ in range(num_layers)
|
505 |
+
]
|
506 |
+
)
|
507 |
+
|
508 |
+
def forward(self, hidden_states: torch.FloatTensor, causal: bool = True) -> torch.FloatTensor:
|
509 |
+
for resnet in self.res_blocks:
|
510 |
+
hidden_states = resnet(hidden_states, causal=causal)
|
511 |
+
|
512 |
+
return hidden_states
|
513 |
+
|
514 |
+
|
515 |
+
class DepthToSpaceUpsample(nn.Module):
|
516 |
+
def __init__(self, dims, in_channels, stride):
|
517 |
+
super().__init__()
|
518 |
+
self.stride = stride
|
519 |
+
self.out_channels = np.prod(stride) * in_channels
|
520 |
+
self.conv = make_conv_nd(
|
521 |
+
dims=dims,
|
522 |
+
in_channels=in_channels,
|
523 |
+
out_channels=self.out_channels,
|
524 |
+
kernel_size=3,
|
525 |
+
stride=1,
|
526 |
+
causal=True,
|
527 |
+
)
|
528 |
+
|
529 |
+
def forward(self, x, causal: bool = True):
|
530 |
+
x = self.conv(x, causal=causal)
|
531 |
+
x = rearrange(
|
532 |
+
x,
|
533 |
+
"b (c p1 p2 p3) d h w -> b c (d p1) (h p2) (w p3)",
|
534 |
+
p1=self.stride[0],
|
535 |
+
p2=self.stride[1],
|
536 |
+
p3=self.stride[2],
|
537 |
+
)
|
538 |
+
if self.stride[0] == 2:
|
539 |
+
x = x[:, :, 1:, :, :]
|
540 |
+
return x
|
541 |
+
|
542 |
+
|
543 |
+
class LayerNorm(nn.Module):
|
544 |
+
def __init__(self, dim, eps, elementwise_affine=True) -> None:
|
545 |
+
super().__init__()
|
546 |
+
self.norm = nn.LayerNorm(dim, eps=eps, elementwise_affine=elementwise_affine)
|
547 |
+
|
548 |
+
def forward(self, x):
|
549 |
+
x = rearrange(x, "b c d h w -> b d h w c")
|
550 |
+
x = self.norm(x)
|
551 |
+
x = rearrange(x, "b d h w c -> b c d h w")
|
552 |
+
return x
|
553 |
+
|
554 |
+
|
555 |
+
class ResnetBlock3D(nn.Module):
|
556 |
+
r"""
|
557 |
+
A Resnet block.
|
558 |
+
|
559 |
+
Parameters:
|
560 |
+
in_channels (`int`): The number of channels in the input.
|
561 |
+
out_channels (`int`, *optional*, default to be `None`):
|
562 |
+
The number of output channels for the first conv layer. If None, same as `in_channels`.
|
563 |
+
dropout (`float`, *optional*, defaults to `0.0`): The dropout probability to use.
|
564 |
+
groups (`int`, *optional*, default to `32`): The number of groups to use for the first normalization layer.
|
565 |
+
eps (`float`, *optional*, defaults to `1e-6`): The epsilon to use for the normalization.
|
566 |
+
"""
|
567 |
+
|
568 |
+
def __init__(
|
569 |
+
self,
|
570 |
+
dims: Union[int, Tuple[int, int]],
|
571 |
+
in_channels: int,
|
572 |
+
out_channels: Optional[int] = None,
|
573 |
+
conv_shortcut: bool = False,
|
574 |
+
dropout: float = 0.0,
|
575 |
+
groups: int = 32,
|
576 |
+
eps: float = 1e-6,
|
577 |
+
norm_layer: str = "group_norm",
|
578 |
+
):
|
579 |
+
super().__init__()
|
580 |
+
self.in_channels = in_channels
|
581 |
+
out_channels = in_channels if out_channels is None else out_channels
|
582 |
+
self.out_channels = out_channels
|
583 |
+
self.use_conv_shortcut = conv_shortcut
|
584 |
+
|
585 |
+
if norm_layer == "group_norm":
|
586 |
+
self.norm1 = nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True)
|
587 |
+
elif norm_layer == "pixel_norm":
|
588 |
+
self.norm1 = PixelNorm()
|
589 |
+
elif norm_layer == "layer_norm":
|
590 |
+
self.norm1 = LayerNorm(in_channels, eps=eps, elementwise_affine=True)
|
591 |
+
|
592 |
+
self.non_linearity = nn.SiLU()
|
593 |
+
|
594 |
+
self.conv1 = make_conv_nd(dims, in_channels, out_channels, kernel_size=3, stride=1, padding=1, causal=True)
|
595 |
+
|
596 |
+
if norm_layer == "group_norm":
|
597 |
+
self.norm2 = nn.GroupNorm(num_groups=groups, num_channels=out_channels, eps=eps, affine=True)
|
598 |
+
elif norm_layer == "pixel_norm":
|
599 |
+
self.norm2 = PixelNorm()
|
600 |
+
elif norm_layer == "layer_norm":
|
601 |
+
self.norm2 = LayerNorm(out_channels, eps=eps, elementwise_affine=True)
|
602 |
+
|
603 |
+
self.dropout = torch.nn.Dropout(dropout)
|
604 |
+
|
605 |
+
self.conv2 = make_conv_nd(dims, out_channels, out_channels, kernel_size=3, stride=1, padding=1, causal=True)
|
606 |
+
|
607 |
+
self.conv_shortcut = (
|
608 |
+
make_linear_nd(dims=dims, in_channels=in_channels, out_channels=out_channels)
|
609 |
+
if in_channels != out_channels
|
610 |
+
else nn.Identity()
|
611 |
+
)
|
612 |
+
|
613 |
+
self.norm3 = (
|
614 |
+
LayerNorm(in_channels, eps=eps, elementwise_affine=True) if in_channels != out_channels else nn.Identity()
|
615 |
+
)
|
616 |
+
|
617 |
+
def forward(
|
618 |
+
self,
|
619 |
+
input_tensor: torch.FloatTensor,
|
620 |
+
causal: bool = True,
|
621 |
+
) -> torch.FloatTensor:
|
622 |
+
hidden_states = input_tensor
|
623 |
+
|
624 |
+
hidden_states = self.norm1(hidden_states)
|
625 |
+
|
626 |
+
hidden_states = self.non_linearity(hidden_states)
|
627 |
+
|
628 |
+
hidden_states = self.conv1(hidden_states, causal=causal)
|
629 |
+
|
630 |
+
hidden_states = self.norm2(hidden_states)
|
631 |
+
|
632 |
+
hidden_states = self.non_linearity(hidden_states)
|
633 |
+
|
634 |
+
hidden_states = self.dropout(hidden_states)
|
635 |
+
|
636 |
+
hidden_states = self.conv2(hidden_states, causal=causal)
|
637 |
+
|
638 |
+
input_tensor = self.norm3(input_tensor)
|
639 |
+
|
640 |
+
input_tensor = self.conv_shortcut(input_tensor)
|
641 |
+
|
642 |
+
output_tensor = input_tensor + hidden_states
|
643 |
+
|
644 |
+
return output_tensor
|
645 |
+
|
646 |
+
|
647 |
+
def patchify(x, patch_size_hw, patch_size_t=1):
|
648 |
+
if patch_size_hw == 1 and patch_size_t == 1:
|
649 |
+
return x
|
650 |
+
if x.dim() == 4:
|
651 |
+
x = rearrange(x, "b c (h q) (w r) -> b (c r q) h w", q=patch_size_hw, r=patch_size_hw)
|
652 |
+
elif x.dim() == 5:
|
653 |
+
x = rearrange(x, "b c (f p) (h q) (w r) -> b (c p r q) f h w", p=patch_size_t, q=patch_size_hw, r=patch_size_hw)
|
654 |
+
else:
|
655 |
+
raise ValueError(f"Invalid input shape: {x.shape}")
|
656 |
+
|
657 |
+
return x
|
658 |
+
|
659 |
+
|
660 |
+
def unpatchify(x, patch_size_hw, patch_size_t=1):
|
661 |
+
if patch_size_hw == 1 and patch_size_t == 1:
|
662 |
+
return x
|
663 |
+
|
664 |
+
if x.dim() == 4:
|
665 |
+
x = rearrange(x, "b (c r q) h w -> b c (h q) (w r)", q=patch_size_hw, r=patch_size_hw)
|
666 |
+
elif x.dim() == 5:
|
667 |
+
x = rearrange(x, "b (c p r q) f h w -> b c (f p) (h q) (w r)", p=patch_size_t, q=patch_size_hw, r=patch_size_hw)
|
668 |
+
|
669 |
+
return x
|
670 |
+
|
671 |
+
|
672 |
+
def create_video_autoencoder_config(
|
673 |
+
latent_channels: int = 64,
|
674 |
+
):
|
675 |
+
config = {
|
676 |
+
"_class_name": "CausalVideoAutoencoder",
|
677 |
+
"dims": 3, # (2, 1), # 2 for Conv2, 3 for Conv3d, (2, 1) for Conv2d followed by Conv1d
|
678 |
+
"in_channels": 3, # Number of input color channels (e.g., RGB)
|
679 |
+
"out_channels": 3, # Number of output color channels
|
680 |
+
"latent_channels": latent_channels, # Number of channels in the latent space representation
|
681 |
+
"blocks": [
|
682 |
+
("res_x", 4),
|
683 |
+
("compress_space", 1),
|
684 |
+
("res_x_y", 1),
|
685 |
+
("res_x", 2),
|
686 |
+
("compress_all", 1),
|
687 |
+
("res_x", 3),
|
688 |
+
("compress_all", 1),
|
689 |
+
("res_x_y", 1),
|
690 |
+
("res_x", 2),
|
691 |
+
("compress_time", 1),
|
692 |
+
("res_x", 3),
|
693 |
+
("res_x", 3),
|
694 |
+
],
|
695 |
+
"patch_size": 4,
|
696 |
+
"latent_log_var": "uniform",
|
697 |
+
"use_quant_conv": False,
|
698 |
+
"norm_layer": "layer_norm",
|
699 |
+
"causal_decoder": True,
|
700 |
+
}
|
701 |
+
|
702 |
+
return config
|
703 |
+
|
704 |
+
|
705 |
+
def test_vae_patchify_unpatchify():
|
706 |
+
import torch
|
707 |
+
|
708 |
+
x = torch.randn(2, 3, 8, 64, 64)
|
709 |
+
x_patched = patchify(x, patch_size_hw=4, patch_size_t=4)
|
710 |
+
x_unpatched = unpatchify(x_patched, patch_size_hw=4, patch_size_t=4)
|
711 |
+
assert torch.allclose(x, x_unpatched)
|
712 |
+
|
713 |
+
|
714 |
+
def demo_video_autoencoder_forward_backward():
|
715 |
+
# Configuration for the VideoAutoencoder
|
716 |
+
config = create_video_autoencoder_config()
|
717 |
+
|
718 |
+
# Instantiate the VideoAutoencoder with the specified configuration
|
719 |
+
video_autoencoder = CausalVideoAutoencoder.from_config(config)
|
720 |
+
|
721 |
+
print(video_autoencoder)
|
722 |
+
video_autoencoder.eval()
|
723 |
+
# Print the total number of parameters in the video autoencoder
|
724 |
+
total_params = sum(p.numel() for p in video_autoencoder.parameters())
|
725 |
+
print(f"Total number of parameters in VideoAutoencoder: {total_params:,}")
|
726 |
+
|
727 |
+
# Create a mock input tensor simulating a batch of videos
|
728 |
+
# Shape: (batch_size, channels, depth, height, width)
|
729 |
+
# E.g., 4 videos, each with 3 color channels, 16 frames, and 64x64 pixels per frame
|
730 |
+
input_videos = torch.randn(2, 3, 17, 64, 64)
|
731 |
+
|
732 |
+
# Forward pass: encode and decode the input videos
|
733 |
+
latent = video_autoencoder.encode(input_videos).latent_dist.mode()
|
734 |
+
print(f"input shape={input_videos.shape}")
|
735 |
+
print(f"latent shape={latent.shape}")
|
736 |
+
|
737 |
+
reconstructed_videos = video_autoencoder.decode(latent, target_shape=input_videos.shape).sample
|
738 |
+
|
739 |
+
print(f"reconstructed shape={reconstructed_videos.shape}")
|
740 |
+
|
741 |
+
# Validate that single image gets treated the same way as first frame
|
742 |
+
input_image = input_videos[:, :, :1, :, :]
|
743 |
+
image_latent = video_autoencoder.encode(input_image).latent_dist.mode()
|
744 |
+
reconstructed_image = video_autoencoder.decode(image_latent, target_shape=image_latent.shape).sample
|
745 |
+
|
746 |
+
first_frame_latent = latent[:, :, :1, :, :]
|
747 |
+
|
748 |
+
# assert torch.allclose(image_latent, first_frame_latent, atol=1e-6)
|
749 |
+
# assert torch.allclose(reconstructed_image, reconstructed_videos[:, :, :1, :, :], atol=1e-6)
|
750 |
+
assert (image_latent == first_frame_latent).all()
|
751 |
+
assert (reconstructed_image == reconstructed_videos[:, :, :1, :, :]).all()
|
752 |
+
|
753 |
+
# Calculate the loss (e.g., mean squared error)
|
754 |
+
loss = torch.nn.functional.mse_loss(input_videos, reconstructed_videos)
|
755 |
+
|
756 |
+
# Perform backward pass
|
757 |
+
loss.backward()
|
758 |
+
|
759 |
+
print(f"Demo completed with loss: {loss.item()}")
|
760 |
+
|
761 |
+
|
762 |
+
# Ensure to call the demo function to execute the forward and backward pass
|
763 |
+
if __name__ == "__main__":
|
764 |
+
demo_video_autoencoder_forward_backward()
|