import torch from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline import gradio as gr checkpoint = "suriya7/English-to-Tamil" tokenizer = AutoTokenizer.from_pretrained(checkpoint) model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint) pipe=pipeline("text2text-generation", model="suriya7/English-to-Tamil") def language_translator(text): tokenized = tokenizer([text], return_tensors='pt') out = model.generate(**tokenized, max_length=128) return tokenizer.decode(out[0],skip_special_tokens=True) with gr.Blocks() as demo: with gr.Row(): with gr.Column(): english=gr.Textbox(label='English text') translate_btn=gr.Button(value='Translate') with gr.Column(): german=gr.Textbox(label='Tamil text') translate_btn.click(language_translator, inputs=english,outputs=german) demo.launch(share=True)