Spaces:
Sleeping
Sleeping
File size: 11,401 Bytes
f4e6998 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
from typing import Optional, Sequence, Generator
from llama_cpp import Llama, LogitsProcessorList, LlamaGrammar, llama_cpp, npt, np, StoppingCriteriaList
from ctypes import POINTER
from KMP_list import kmp_search, compute_lps_array
def is_UTF8_incomplete(all_text):
multibyte_fix = 0
if len(all_text) < 3:
all_text = b'000' + all_text
for k, char in enumerate(all_text[-3:]):
k = 3 - k
for num, pattern in [(2, 192), (3, 224), (4, 240)]:
# Bitwise AND check
if num > k and pattern & char == pattern:
multibyte_fix = num - k
return multibyte_fix
def get_complete_UTF8(all_text):
multibyte_fix = is_UTF8_incomplete(all_text)
if multibyte_fix > 0:
multibyte_fix = multibyte_fix - 3
return all_text[:multibyte_fix].decode("utf-8")
else:
return all_text.decode("utf-8")
class StreamingLLM(Llama):
def __init__(self, model_path: str, **kwargs):
super().__init__(model_path, **kwargs)
self.venv = [0]
def str_detokenize(self, tokens) -> str:
return get_complete_UTF8(self.detokenize(tokens))
def kv_cache_seq_trim(self):
self._ctx.kv_cache_seq_rm(-1, self.n_tokens, -1)
def venv_create(self):
self.venv.append(0)
return len(self.venv) - 1
def venv_disband(self):
if len(self.venv) <= 1:
return 0
tmp = self.venv.pop()
self.venv[-1] += tmp
return len(self.venv) - 1
def venv_remove(self, venv_idx=None):
if venv_idx is None:
venv_idx = len(self.venv) - 1
if venv_idx <= 0 or venv_idx >= len(self.venv):
return len(self.venv) - 1
if venv_idx == len(self.venv) - 1:
# 最后一层
self.n_tokens -= min(self.venv.pop(), self.n_tokens)
self.kv_cache_seq_trim()
else:
# 非最后一层
n_keep = self.n_tokens - sum(self.venv[i] for i in range(venv_idx, len(self.venv)))
n_discard = self.venv.pop(venv_idx)
self.kv_cache_seq_ltrim(n_keep, n_discard)
return len(self.venv) - 1
def venv_pop_token(self):
self.n_tokens -= 1
self.venv[-1] -= 1
self.kv_cache_seq_trim()
def kv_cache_seq_ltrim(self, n_keep, n_discard=256, n_past=-1, im_start=None):
if n_past < 0:
n_past = self.n_tokens
if im_start is not None: # [<|im_start|>, name, nl]
lps = compute_lps_array(im_start)
_idx = kmp_search(self.input_ids, im_start, n_keep + n_discard, n_past, lps)
if _idx >= n_keep: # 其实是大于等于 n_keep + n_discard
n_discard = _idx - n_keep # 截断到最近的 im_start 序列结构
else:
_idx = kmp_search(self.input_ids, im_start, n_keep, n_past, lps)
if _idx >= n_keep:
n_keep = _idx + len(im_start) # 至少保留一个 im_start 序列结构
self._ctx.kv_cache_seq_rm(-1, n_keep, n_keep + n_discard)
self._ctx.kv_cache_seq_shift(0, n_keep + n_discard, n_past, -n_discard)
self.input_ids[n_keep:n_past - n_discard] = self.input_ids[n_keep + n_discard:n_past]
self.n_tokens = n_past - n_discard
def eval_t(self, tokens, n_keep=4, n_discard=256, im_start=None):
if self._n_ctx < self.n_tokens + len(tokens):
tmp_n_discard = max(n_discard, self.n_tokens + len(tokens) - self._n_ctx)
self.kv_cache_seq_ltrim(n_keep, tmp_n_discard, im_start=im_start)
for i in range(0, len(tokens), self.n_batch):
batch = tokens[i: i + self.n_batch]
n_past = self.n_tokens
n_tokens = len(batch)
self._batch.set_batch(
batch=batch, n_past=n_past, logits_all=self.context_params.logits_all
)
self._ctx.decode(self._batch)
# Save tokens
self.input_ids[n_past: n_past + n_tokens] = batch
# Save logits
rows = n_tokens
cols = self._n_vocab
offset = (
0 if self.context_params.logits_all else n_tokens - 1
) # NOTE: Only save the last token logits if logits_all is False
self.scores[n_past + offset: n_past + n_tokens, :].reshape(-1)[
:
] = self._ctx.get_logits()[offset * cols: rows * cols]
# Update n_tokens
self.n_tokens += n_tokens
self.venv[-1] += n_tokens
return self.n_tokens
def sample_t(
self,
top_k: int = 40,
top_p: float = 0.95,
min_p: float = 0.05,
typical_p: float = 1.0,
temp: float = 0.80,
repeat_penalty: float = 1.1,
repeat_last_n: int = 64,
frequency_penalty: float = 0.0,
presence_penalty: float = 0.0,
tfs_z: float = 1.0,
mirostat_mode: int = 0,
mirostat_eta: float = 0.1,
mirostat_tau: float = 5.0,
penalize_nl: bool = True,
logits_processor: Optional[LogitsProcessorList] = None,
grammar: Optional[LlamaGrammar] = None,
):
last_n_tokens_data = [llama_cpp.llama_token(0)] * max(
0, repeat_last_n - self.n_tokens
) + self._input_ids[-repeat_last_n:].tolist()
last_n_tokens_size = len(last_n_tokens_data)
n_vocab = self._n_vocab
n_ctx = self._n_ctx
top_k = n_vocab if top_k <= 0 else top_k
last_n_tokens_size = n_ctx if last_n_tokens_size < 0 else last_n_tokens_size
last_n_tokens_data_c = (llama_cpp.llama_token * last_n_tokens_size)(
*last_n_tokens_data
)
logits: npt.NDArray[np.single] = self.scores[self.n_tokens - 1: self.n_tokens, :].ravel()
if logits_processor is not None:
logits[:] = logits_processor(self._input_ids, logits)
self._candidates.copy_logits(logits)
self._ctx.sample_repetition_penalties(
candidates=self._candidates,
last_tokens_data=last_n_tokens_data_c,
penalty_last_n=last_n_tokens_size,
penalty_repeat=repeat_penalty,
penalty_freq=frequency_penalty,
penalty_present=presence_penalty,
)
if not penalize_nl:
nl_logit = logits[self._token_nl]
self._candidates.candidates.data[self._token_nl].logit = llama_cpp.c_float(
nl_logit
)
if grammar is not None:
self._ctx.sample_grammar(
candidates=self._candidates,
grammar=grammar,
)
if temp < 0.0:
self._ctx.sample_softmax(candidates=self._candidates)
id_ = self._candidates.candidates.data[0].id
elif temp == 0.0:
id_ = self._ctx.sample_token_greedy(candidates=self._candidates)
elif mirostat_mode == 1:
self._ctx.sample_temp(candidates=self._candidates, temp=temp)
id_ = self._ctx.sample_token_mirostat(
candidates=self._candidates,
tau=mirostat_tau,
eta=mirostat_eta,
mu=2.0 * mirostat_tau,
m=100,
)
elif mirostat_mode == 2:
self._ctx.sample_temp(candidates=self._candidates, temp=temp)
id_ = self._ctx.sample_token_mirostat_v2(
candidates=self._candidates,
tau=mirostat_tau,
eta=mirostat_eta,
mu=2.0 * mirostat_tau,
)
else:
self._ctx.sample_top_k(candidates=self._candidates, k=top_k, min_keep=1)
self._ctx.sample_tail_free(candidates=self._candidates, z=tfs_z, min_keep=1)
self._ctx.sample_typical(
candidates=self._candidates, p=typical_p, min_keep=1
)
self._ctx.sample_top_p(candidates=self._candidates, p=top_p, min_keep=1)
self._ctx.sample_min_p(candidates=self._candidates, p=min_p, min_keep=1)
self._ctx.sample_temp(candidates=self._candidates, temp=temp)
id_ = self._ctx.sample_token(candidates=self._candidates)
if grammar is not None:
self._ctx.grammar_accept_token(grammar=grammar, token=id_)
return id_
def generate_t(
self,
tokens: Sequence[int],
n_keep,
n_discard: int = 256,
im_start=None,
top_k: int = 40,
top_p: float = 0.95,
min_p: float = 0.05,
typical_p: float = 1.0,
temp: float = 0.80,
repeat_penalty: float = 1.1,
repeat_last_n: int = 64,
frequency_penalty: float = 0.0,
presence_penalty: float = 0.0,
tfs_z: float = 1.0,
mirostat_mode: int = 0,
mirostat_tau: float = 5.0,
mirostat_eta: float = 0.1,
logits_processor: Optional[LogitsProcessorList] = None,
stopping_criteria: Optional[StoppingCriteriaList] = None,
grammar: Optional[LlamaGrammar] = None,
) -> Generator[int, Optional[Sequence[int]], None]:
typical_p = float(typical_p)
frequency_penalty = float(frequency_penalty)
presence_penalty = float(presence_penalty)
tfs_z = float(tfs_z)
mirostat_tau = float(mirostat_tau)
while True:
self.eval_t(tokens, n_keep, n_discard, im_start=im_start)
token = self.sample_t(
top_k=top_k,
top_p=top_p,
min_p=min_p,
typical_p=typical_p,
temp=temp,
repeat_penalty=repeat_penalty,
repeat_last_n=repeat_last_n,
frequency_penalty=frequency_penalty,
presence_penalty=presence_penalty,
tfs_z=tfs_z,
mirostat_mode=mirostat_mode,
mirostat_tau=mirostat_tau,
mirostat_eta=mirostat_eta,
logits_processor=logits_processor,
grammar=grammar,
)
if stopping_criteria is not None and stopping_criteria(
self._input_ids, self._scores[-1, :]
):
return
tokens_or_none = yield token
tokens = [token]
if tokens_or_none is not None:
tokens.extend(tokens_or_none)
def load_session(self, filepath: str):
n_tokens = POINTER(llama_cpp.c_size_t)(llama_cpp.c_size_t(0))
tokens = (llama_cpp.llama_token * self.n_ctx())()
retn = llama_cpp.llama_load_session_file(self._ctx.ctx,
filepath.encode('utf-8'),
tokens,
self.n_ctx(),
n_tokens)
self.n_tokens = n_tokens.contents.value
self.input_ids[:self.n_tokens] = tokens[:self.n_tokens]
return retn
def save_session(self, filepath: str):
tokens = self._input_ids.tolist()
tokens = (llama_cpp.llama_token * len(tokens))(*tokens)
return llama_cpp.llama_save_session_file(self._ctx.ctx, filepath.encode('utf-8'), tokens, self.n_tokens)
|