File size: 26,851 Bytes
2d0e22d
 
8ba5cfe
2d0e22d
 
 
 
 
 
 
61ae0cb
2d0e22d
61ae0cb
 
2d0e22d
 
 
 
 
 
 
61ae0cb
2d0e22d
61ae0cb
2d0e22d
61ae0cb
2d0e22d
 
 
 
61ae0cb
2d0e22d
 
 
 
 
 
 
 
 
 
 
 
 
61ae0cb
2d0e22d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7b1d93
61ae0cb
2d0e22d
 
61ae0cb
2d0e22d
 
 
fbdd109
 
61ae0cb
2d0e22d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a50f62
2d0e22d
 
 
 
 
 
 
 
 
f0d0ec8
e767711
2d0e22d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7b1d93
 
2d0e22d
 
b7b1d93
2d0e22d
 
b7b1d93
2d0e22d
 
b7b1d93
2d0e22d
b7b1d93
2d0e22d
0f00e60
2d0e22d
 
 
 
 
 
 
 
b7b1d93
 
2d0e22d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e767711
f0d0ec8
e767711
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d0e22d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46506d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
041e06c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
900a405
 
041e06c
 
 
 
46506d2
 
041e06c
 
46506d2
041e06c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46506d2
 
041e06c
46506d2
041e06c
900a405
 
 
041e06c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46506d2
 
 
 
 
 
 
 
 
 
 
 
041e06c
46506d2
041e06c
46506d2
041e06c
 
2d0e22d
f0d0ec8
2d0e22d
041e06c
2d0e22d
 
041e06c
fbdd109
041e06c
 
 
 
 
 
 
 
 
 
 
2d0e22d
 
 
 
 
 
 
13a253a
 
 
 
 
 
 
 
 
 
 
 
 
 
2d0e22d
 
 
61ae0cb
2d0e22d
 
041e06c
 
 
 
 
c50608b
041e06c
 
61ae0cb
2d0e22d
 
 
 
 
 
 
 
61ae0cb
2d0e22d
 
 
 
 
 
 
 
61ae0cb
2d0e22d
 
 
 
 
 
 
 
c50608b
e767711
f0d0ec8
 
 
e767711
c50608b
e767711
 
 
2d0e22d
f0d0ec8
 
2d0e22d
 
 
 
 
 
61ae0cb
2d0e22d
900a405
 
 
 
61ae0cb
2d0e22d
 
 
 
 
 
 
 
 
 
 
 
f0d0ec8
e767711
2d0e22d
 
61ae0cb
041e06c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d0e22d
 
 
f0d0ec8
2d0e22d
 
 
 
 
 
61ae0cb
46506d2
bc59621
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
from __future__ import annotations

import spaces
import math
import random
import sys
from argparse import ArgumentParser

from tqdm.auto import trange
import einops
import gradio as gr
import k_diffusion as K
import numpy as np
import torch
import torch.nn as nn
from einops import rearrange 
from omegaconf import OmegaConf
from PIL import Image, ImageOps, ImageFilter
from torch import autocast
import cv2
import imageio

sys.path.append("./stable_diffusion")

from stable_diffusion.ldm.util import instantiate_from_config

class CFGDenoiser(nn.Module):
    def __init__(self, model):
        super().__init__()
        self.inner_model = model

    def forward(self, z_0, z_1, sigma, cond, uncond, text_cfg_scale, image_cfg_scale):
        cfg_z_0 = einops.repeat(z_0, "1 ... -> n ...", n=3)
        cfg_z_1 = einops.repeat(z_1, "1 ... -> n ...", n=3)
        cfg_sigma = einops.repeat(sigma, "1 ... -> n ...", n=3)
        cfg_cond = {
            "c_crossattn": [torch.cat([cond["c_crossattn"][0], uncond["c_crossattn"][0], uncond["c_crossattn"][0]])],
            "c_concat": [torch.cat([cond["c_concat"][0], cond["c_concat"][0], uncond["c_concat"][0]])],
        }
        output_0, output_1 = self.inner_model(cfg_z_0, cfg_z_1, cfg_sigma, cond=cfg_cond)
        out_cond_0, out_img_cond_0, out_uncond_0 = output_0.chunk(3)
        out_cond_1, _, _ = output_1.chunk(3)
        return out_uncond_0 + text_cfg_scale * (out_cond_0 - out_img_cond_0) + image_cfg_scale * (out_img_cond_0 - out_uncond_0), \
            out_cond_1

def load_model_from_config(config, ckpt, vae_ckpt=None, verbose=False):
    print(f"Loading model from {ckpt}")
    pl_sd = torch.load(ckpt, map_location="cpu")
    if "global_step" in pl_sd:
        print(f"Global Step: {pl_sd['global_step']}")
    sd = pl_sd["state_dict"]
    if vae_ckpt is not None:
        print(f"Loading VAE from {vae_ckpt}")
        vae_sd = torch.load(vae_ckpt, map_location="cpu")["state_dict"]
        sd = {
            k: vae_sd[k[len("first_stage_model.") :]] if k.startswith("first_stage_model.") else v
            for k, v in sd.items()
        }
    model = instantiate_from_config(config.model)
    m, u = model.load_state_dict(sd, strict=True)
    if len(m) > 0 and verbose:
        print("missing keys:")
        print(m)
    if len(u) > 0 and verbose:
        print("unexpected keys:")
        print(u)
    return model

def append_dims(x, target_dims):
    """Appends dimensions to the end of a tensor until it has target_dims dimensions."""
    dims_to_append = target_dims - x.ndim
    if dims_to_append < 0:
        raise ValueError(f'input has {x.ndim} dims but target_dims is {target_dims}, which is less')
    return x[(...,) + (None,) * dims_to_append]

class CompVisDenoiser(K.external.CompVisDenoiser):
    def __init__(self, model, quantize=False, device='cpu'):
        super().__init__(model, quantize, device)
    
    def get_eps(self, *args, **kwargs):
        return self.inner_model.apply_model(*args, **kwargs)
    
    def forward(self, input_0, input_1, sigma, **kwargs):
        c_out, c_in = [append_dims(x, input_0.ndim) for x in self.get_scalings(sigma)]
        # eps_0, eps_1 = self.get_eps(input_0 * c_in, input_1 * c_in, self.sigma_to_t(sigma), **kwargs)
        # eps_0, eps_1 = self.get_eps(input_0 * c_in, self.sigma_to_t(sigma.cpu().float()).cuda(), **kwargs)
        eps_0, eps_1 = self.get_eps(input_0 * c_in, self.sigma_to_t(sigma.float()).cuda(), **kwargs)
        
        return input_0 + eps_0 * c_out, eps_1

def to_d(x, sigma, denoised):
    """Converts a denoiser output to a Karras ODE derivative."""
    return (x - denoised) / append_dims(sigma, x.ndim)

def default_noise_sampler(x):
    return lambda sigma, sigma_next: torch.randn_like(x)

def get_ancestral_step(sigma_from, sigma_to, eta=1.):
    """Calculates the noise level (sigma_down) to step down to and the amount
    of noise to add (sigma_up) when doing an ancestral sampling step."""
    if not eta:
        return sigma_to, 0.
    sigma_up = min(sigma_to, eta * (sigma_to ** 2 * (sigma_from ** 2 - sigma_to ** 2) / sigma_from ** 2) ** 0.5)
    sigma_down = (sigma_to ** 2 - sigma_up ** 2) ** 0.5
    return sigma_down, sigma_up

def decode_mask(mask, height = 256, width = 256):
    mask = nn.functional.interpolate(mask, size=(height, width), mode="bilinear", align_corners=False)
    mask = torch.where(mask > 0, 1, -1)  # Thresholding step
    mask = torch.clamp((mask + 1.0) / 2.0, min=0.0, max=1.0)
    mask = 255.0 * rearrange(mask, "1 c h w -> h w c")
    mask = torch.cat([mask, mask, mask], dim=-1)
    mask = mask.type(torch.uint8).cpu().numpy()
    return mask

def sample_euler_ancestral(model, x_0, x_1, sigmas, height, width, extra_args=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
    """Ancestral sampling with Euler method steps."""
    extra_args = {} if extra_args is None else extra_args
    noise_sampler = default_noise_sampler(x_0) if noise_sampler is None else noise_sampler
    s_in = x_0.new_ones([x_0.shape[0]])

    mask_list = []
    image_list = []
    for i in trange(len(sigmas) - 1, disable=disable):
        denoised_0, denoised_1 = model(x_0, x_1, sigmas[i] * s_in, **extra_args)
        image_list.append(denoised_0)

        sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
        d_0 = to_d(x_0, sigmas[i], denoised_0)
        
        # Euler method
        dt = sigma_down - sigmas[i]
        x_0 = x_0 + d_0 * dt

        if sigmas[i + 1] > 0:
            x_0 = x_0 + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up

        x_1 = denoised_1
        mask_list.append(decode_mask(x_1, height, width))
        
    image_list = torch.cat(image_list, dim=0)

    return x_0, x_1, image_list, mask_list

parser = ArgumentParser()
parser.add_argument("--resolution", default=512, type=int)
parser.add_argument("--config", default="configs/generate_diffree.yaml", type=str)
parser.add_argument("--ckpt", default="checkpoints/epoch=000041-step=000010999.ckpt", type=str)
parser.add_argument("--vae-ckpt", default=None, type=str)
args = parser.parse_args()

config = OmegaConf.load(args.config)
model = load_model_from_config(config, args.ckpt, args.vae_ckpt)
model.eval().cuda()
model_wrap = CompVisDenoiser(model)
model_wrap_cfg = CFGDenoiser(model_wrap)
null_token = model.get_learned_conditioning([""])

@spaces.GPU(duration=30)
def generate(
    input_image: Image.Image,
    instruction: str,
    steps: int,
    randomize_seed: bool,
    seed: int,
    randomize_cfg: bool,
    text_cfg_scale: float,
    image_cfg_scale: float,
    weather_close_video: bool,
    decode_image_batch: int
):
    seed = random.randint(0, 100000) if randomize_seed else seed
    text_cfg_scale = round(random.uniform(6.0, 9.0), ndigits=2) if randomize_cfg else text_cfg_scale
    image_cfg_scale = round(random.uniform(1.2, 1.8), ndigits=2) if randomize_cfg else image_cfg_scale

    width, height = input_image.size
    factor = args.resolution / max(width, height)
    factor = math.ceil(min(width, height) * factor / 64) * 64 / min(width, height)
    width = int((width * factor) // 64) * 64
    height = int((height * factor) // 64) * 64
    input_image = ImageOps.fit(input_image, (width, height), method=Image.Resampling.LANCZOS)
    input_image_copy = input_image.convert("RGB")

    if instruction == "":
        return [input_image, seed]
    
    model.cuda()
    with torch.no_grad(), autocast("cuda"), model.ema_scope():
        cond = {}
        cond["c_crossattn"] = [model.get_learned_conditioning([instruction]).to(model.device)]
        input_image = 2 * torch.tensor(np.array(input_image)).float() / 255 - 1
        input_image = rearrange(input_image, "h w c -> 1 c h w").to(model.device)
        cond["c_concat"] = [model.encode_first_stage(input_image).mode().to(model.device)]

        uncond = {}
        uncond["c_crossattn"] = [null_token.to(model.device)]
        uncond["c_concat"] = [torch.zeros_like(cond["c_concat"][0])]
        

        sigmas = model_wrap.get_sigmas(steps).to(model.device)

        extra_args = {
            "cond": cond,
            "uncond": uncond,
            "text_cfg_scale": text_cfg_scale,
            "image_cfg_scale": image_cfg_scale,
        }
        torch.manual_seed(seed)
        z_0 = torch.randn_like(cond["c_concat"][0]).to(model.device) * sigmas[0]
        z_1 = torch.randn_like(cond["c_concat"][0]).to(model.device) * sigmas[0]
        
        z_0, z_1, image_list, mask_list = sample_euler_ancestral(model_wrap_cfg, z_0, z_1, sigmas, height, width, extra_args=extra_args)
        
        x_0 = model.decode_first_stage(z_0)

        if model.first_stage_downsample:
            x_1 = nn.functional.interpolate(z_1, size=(height, width), mode="bilinear", align_corners=False)
            x_1 = torch.where(x_1 > 0, 1, -1)  # Thresholding step
        else:
            x_1 = model.decode_first_stage(z_1)
        
        x_0 = torch.clamp((x_0 + 1.0) / 2.0, min=0.0, max=1.0)
        x_1 = torch.clamp((x_1 + 1.0) / 2.0, min=0.0, max=1.0)
        x_0 = 255.0 * rearrange(x_0, "1 c h w -> h w c")
        x_1 = 255.0 * rearrange(x_1, "1 c h w -> h w c")
        x_1 = torch.cat([x_1, x_1, x_1], dim=-1)
        edited_image = Image.fromarray(x_0.type(torch.uint8).cpu().numpy())
        edited_mask = Image.fromarray(x_1.type(torch.uint8).cpu().numpy())

        image_video_path = None
        if not weather_close_video:
            image_video = []
            
            for i in range(0, len(image_list), decode_image_batch):
                if i + decode_image_batch < len(image_list):
                    tmp_image_list = image_list[i:i+decode_image_batch]
                else:
                    tmp_image_list = image_list[i:]
                tmp_image_list = model.decode_first_stage(tmp_image_list)
                tmp_image_list = torch.clamp((tmp_image_list + 1.0) / 2.0, min=0.0, max=1.0)
                tmp_image_list = 255.0 * rearrange(tmp_image_list, "b c h w -> b h w c")
                tmp_image_list = tmp_image_list.type(torch.uint8).cpu().numpy()
                # image list to image
                for image in tmp_image_list:
                    image_video.append(image)

            image_video_path = "image.mp4"
            fps = 30
            with imageio.get_writer(image_video_path, fps=fps) as video:
                for image in image_video:
                    video.append_data(image)

        edited_mask_copy = edited_mask.copy()
        kernel = np.ones((3, 3), np.uint8)
        edited_mask = cv2.dilate(np.array(edited_mask), kernel, iterations=3)
        edited_mask = Image.fromarray(edited_mask)

        m_img = edited_mask.filter(ImageFilter.GaussianBlur(radius=3))
        m_img = np.asarray(m_img).astype('float') / 255.0
        img_np = np.asarray(input_image_copy).astype('float') / 255.0
        ours_np = np.asarray(edited_image).astype('float') / 255.0

        mix_image_np =  m_img * ours_np + (1 - m_img) * img_np
        mix_image = Image.fromarray((mix_image_np * 255).astype(np.uint8)).convert('RGB')


        red = np.array(mix_image).astype('float') * 1
        red[:, :, 0] = 180.0
        red[:, :, 2] = 0
        red[:, :, 1] = 0
        mix_result_with_red_mask = np.array(mix_image)
        mix_result_with_red_mask = Image.fromarray(
            (mix_result_with_red_mask.astype('float') * (1 - m_img.astype('float') / 2.0) +
            m_img.astype('float') / 2.0 * red).astype('uint8'))


        mask_video_path = "mask.mp4"
        fps = 30
        with imageio.get_writer(mask_video_path, fps=fps) as video:
            for image in mask_list:
                video.append_data(image)

        return [int(seed), text_cfg_scale, image_cfg_scale, edited_image, mix_image, edited_mask_copy, mask_video_path, image_video_path, input_image_copy, mix_result_with_red_mask]


def single_generation(model_wrap_cfg, input_image_copy, instruction, steps, seed, text_cfg_scale, image_cfg_scale, height, width):
    model.cuda()
    with torch.no_grad(), autocast("cuda"), model.ema_scope():
            cond = {}
            input_image_torch = 2 * torch.tensor(np.array(input_image_copy.to(model.device))).float() / 255 - 1
            input_image_torch = rearrange(input_image_torch, "h w c -> 1 c h w").to(model.device)
            cond["c_crossattn"] = [model.get_learned_conditioning([instruction]).to(model.device)]
            cond["c_concat"] = [model.encode_first_stage(input_image_torch).mode().to(model.device)]

            uncond = {}
            uncond["c_crossattn"] = [null_token.to(model.device)]
            uncond["c_concat"] = [torch.zeros_like(cond["c_concat"][0])]

            sigmas = model_wrap.get_sigmas(steps).to(model.device)

            extra_args = {
                "cond": cond,
                "uncond": uncond,
                "text_cfg_scale": text_cfg_scale,
                "image_cfg_scale": image_cfg_scale,
            }
            torch.manual_seed(seed)
            z_0 = torch.randn_like(cond["c_concat"][0]).to(model.device) * sigmas[0]
            z_1 = torch.randn_like(cond["c_concat"][0]).to(model.device) * sigmas[0]
            
            z_0, z_1, _, _ = sample_euler_ancestral(model_wrap_cfg, z_0, z_1, sigmas, height, width, extra_args=extra_args)
        
            x_0 = model.decode_first_stage(z_0)
            
            x_1 = nn.functional.interpolate(z_1, size=(height, width), mode="bilinear", align_corners=False)
            x_1 = torch.where(x_1 > 0, 1, -1)  # Thresholding step

            x_1_mean = torch.sum(x_1).item()/x_1.numel()

            return x_0, x_1, x_1_mean


@spaces.GPU(duration=150)
def generate_list(
    input_image: Image.Image,
    generate_list: str,
    steps: int,
    randomize_seed: bool,
    seed: int,
    randomize_cfg: bool,
    text_cfg_scale: float,
    image_cfg_scale: float,
    weather_close_video: bool,
    decode_image_batch: int
):
    generate_list = generate_list.split('\n')
    # Remove the empty element
    generate_list = [element for element in generate_list if element]

    seed = random.randint(0, 100000) if randomize_seed else seed
    text_cfg_scale = round(random.uniform(6.0, 9.0), ndigits=2) if randomize_cfg else text_cfg_scale
    image_cfg_scale = round(random.uniform(1.2, 1.8), ndigits=2) if randomize_cfg else image_cfg_scale

    width, height = input_image.size
    factor = args.resolution / max(width, height)
    factor = math.ceil(min(width, height) * factor / 64) * 64 / min(width, height)
    width = int((width * factor) // 64) * 64
    height = int((height * factor) // 64) * 64
    input_image = ImageOps.fit(input_image, (width, height), method=Image.Resampling.LANCZOS)

    if len(generate_list) == 0:
        return [input_image, seed]
    
    model.cuda()
    image_video = [np.array(input_image).astype(np.uint8)]
    generate_index = 0
    retry_number = 0
    max_retry = 10
    input_image_copy = input_image.convert("RGB")
    while generate_index < len(generate_list): 
        print(f'generate_index: {str(generate_index)}')
        instruction = generate_list[generate_index]
        
        # x_0, x_1, x_1_mean = single_generation(model_wrap_cfg, input_image_copy, instruction, steps, seed, text_cfg_scale, image_cfg_scale, height, width)
        with torch.no_grad(), autocast("cuda"), model.ema_scope():
            cond = {}
            input_image_torch = 2 * torch.tensor(np.array(input_image_copy)).float() / 255 - 1
            input_image_torch = rearrange(input_image_torch, "h w c -> 1 c h w").to(model.device)
            cond["c_crossattn"] = [model.get_learned_conditioning([instruction]).to(model.device)]
            cond["c_concat"] = [model.encode_first_stage(input_image_torch).mode().to(model.device)]

            uncond = {}
            uncond["c_crossattn"] = [null_token.to(model.device)]
            uncond["c_concat"] = [torch.zeros_like(cond["c_concat"][0])]

            sigmas = model_wrap.get_sigmas(steps).to(model.device)

            extra_args = {
                "cond": cond,
                "uncond": uncond,
                "text_cfg_scale": text_cfg_scale,
                "image_cfg_scale": image_cfg_scale,
            }
            torch.manual_seed(seed)
            z_0 = torch.randn_like(cond["c_concat"][0]).to(model.device) * sigmas[0]
            z_1 = torch.randn_like(cond["c_concat"][0]).to(model.device) * sigmas[0]
            
            z_0, z_1, _, _ = sample_euler_ancestral(model_wrap_cfg, z_0, z_1, sigmas, height, width, extra_args=extra_args)
        
            x_0 = model.decode_first_stage(z_0)
            
            x_1 = nn.functional.interpolate(z_1, size=(height, width), mode="bilinear", align_corners=False)
            x_1 = torch.where(x_1 > 0, 1, -1)  # Thresholding step

            x_1_mean = torch.sum(x_1).item()/x_1.numel()
            
            if x_1_mean < -0.99:
                seed += 1
                retry_number +=1
                if retry_number > max_retry:
                    generate_index += 1
                continue
            else:
                generate_index += 1
            
            x_0 = torch.clamp((x_0 + 1.0) / 2.0, min=0.0, max=1.0)
            x_1 = torch.clamp((x_1 + 1.0) / 2.0, min=0.0, max=1.0)
            x_0 = 255.0 * rearrange(x_0, "1 c h w -> h w c")
            x_1 = 255.0 * rearrange(x_1, "1 c h w -> h w c")
            x_1 = torch.cat([x_1, x_1, x_1], dim=-1)
            edited_image = Image.fromarray(x_0.type(torch.uint8).cpu().numpy())
            edited_mask = Image.fromarray(x_1.type(torch.uint8).cpu().numpy())

            # 对edited_mask做膨胀
            edited_mask_copy = edited_mask.copy()
            kernel = np.ones((3, 3), np.uint8)
            edited_mask = cv2.dilate(np.array(edited_mask), kernel, iterations=3)
            edited_mask = Image.fromarray(edited_mask)

            m_img = edited_mask.filter(ImageFilter.GaussianBlur(radius=3))
            m_img = np.asarray(m_img).astype('float') / 255.0
            img_np = np.asarray(input_image_copy).astype('float') / 255.0
            ours_np = np.asarray(edited_image).astype('float') / 255.0

            mix_image_np =  m_img * ours_np + (1 - m_img) * img_np
            
            image_video.append((mix_image_np * 255).astype(np.uint8))
            mix_image = Image.fromarray((mix_image_np * 255).astype(np.uint8)).convert('RGB')
            
            mix_result_with_red_mask = None
            mask_video_path = None
            image_video_path = None
            edited_mask_copy = None
            
            if generate_index == len(generate_list):
                image_video_path = "image.mp4"
                fps = 2
                with imageio.get_writer(image_video_path, fps=fps) as video:
                    for image in image_video:
                        video.append_data(image)

            yield [int(seed), text_cfg_scale, image_cfg_scale, edited_image, mix_image, edited_mask_copy, mask_video_path, image_video_path, input_image, mix_result_with_red_mask]

            input_image_copy = mix_image


def reset():
    return [100, "Randomize Seed", 1372, "Fix CFG", 7.5, 1.5, None, None, None, None, None, None, None, "Close Image Video", 10]


def get_example():
    return [
        ["example_images/dufu.png", "", "black and white suit\nsunglasses\nblue medical mask\nyellow schoolbag\nred bow tie\nbrown high-top hat", 100, "Fix Seed", 1372, "Fix CFG", 7.5, 1.5],
        ["example_images/girl.jpeg", "", "reflective sunglasses\nshiny golden crown\ndiamond necklace\ngorgeous yellow gown\nbeautiful tattoo", 100, "Fix Seed", 1372, "Fix CFG", 7.5, 1.5],
        ["example_images/dufu.png", "black and white suit", "", 100, "Fix Seed", 1372, "Fix CFG", 7.5, 1.5],
        ["example_images/girl.jpeg", "reflective sunglasses", "", 100, "Fix Seed", 1372, "Fix CFG", 7.5, 1.5],
        ["example_images/road_sign.png", "stop sign", "", 100, "Fix Seed", 1372, "Fix CFG", 7.5, 1.5],
        ["example_images/dufu.png", "blue medical mask", "", 100, "Fix Seed", 1372, "Fix CFG", 7.5, 1.5],
        ["example_images/people_standing.png", "dark green pleated skirt", "", 100, "Fix Seed", 1372, "Fix CFG", 7.5, 1.5],
        ["example_images/girl.jpeg", "shiny golden crown", "", 100, "Fix Seed", 1372, "Fix CFG", 7.5, 1.5],
        ["example_images/dufu.png", "sunglasses", "", 100, "Fix Seed", 1372, "Fix CFG", 7.5, 1.5],
        ["example_images/girl.jpeg", "diamond necklace", "", 100, "Fix Seed", 1372, "Fix CFG", 7.5, 1.5],
        ["example_images/iron_man.jpg", "sunglasses", "", 100, "Fix Seed", 1372, "Fix CFG", 7.5, 1.5],
        ["example_images/girl.jpeg", "the queen's crown", "", 100, "Fix Seed", 1372, "Fix CFG", 7.5, 1.5],
        ["example_images/girl.jpeg", "gorgeous yellow gown", "", 100, "Fix Seed", 1372, "Fix CFG", 7.5, 1.5],
    ]

with gr.Blocks(css="footer {visibility: hidden}") as demo:
    with gr.Row():
        gr.Markdown(
            "<div align='center'><font size='14'>Diffree: Text-Guided Shape Free Object Inpainting with Diffusion Model</font></div>"  # noqa
        )
    with gr.Row():
        gr.Markdown(
           """
            <div align='center'>
            <a href="https://opengvlab.github.io/Diffree/"><u>[🌐Project Page]</u></a>
            &nbsp;&nbsp;&nbsp;
            <a href="https://drive.google.com/file/d/1AdIPA5TK5LB1tnqqZuZ9GsJ6Zzqo2ua6/view"><u>[🎥 Video]</u></a>
            &nbsp;&nbsp;&nbsp;
            <a href="https://github.com/OpenGVLab/Diffree"><u>[🔍 Code]</u></a>
            &nbsp;&nbsp;&nbsp;
            <a href="https://arxiv.org/pdf/2407.16982"><u>[📜 Arxiv]</u></a>
            </div>
            """  # noqa
        )

    with gr.Row():
        with gr.Column(scale=1, min_width=100):
            with gr.Row():
                input_image = gr.Image(label="Input Image", type="pil", interactive=True)
            with gr.Row():
                instruction = gr.Textbox(lines=1, label="Single object description", interactive=True)
            with gr.Row():
                reset_button = gr.Button("Reset")
                generate_button = gr.Button("Generate")
            with gr.Row():
                list_input = gr.Textbox(label="Input List", placeholder="Enter one item per line\nThe generation time increases with the quantity.", lines=10)
            with gr.Row():
                list_generate_button = gr.Button("List Generate")
            with gr.Row():
                steps = gr.Number(value=100, precision=0, label="Steps", interactive=True)
                randomize_seed = gr.Radio(
                    ["Fix Seed", "Randomize Seed"],
                    value="Randomize Seed",
                    type="index",
                    label="Seed Selection",
                    show_label=False,
                    interactive=True,
                )
                seed = gr.Number(value=1372, precision=0, label="Seed", interactive=True)
                randomize_cfg = gr.Radio(
                    ["Fix CFG", "Randomize CFG"],
                    value="Fix CFG",
                    type="index",
                    label="CFG Selection",
                    show_label=False,
                    interactive=True,
                )
                text_cfg_scale = gr.Number(value=7.5, label=f"Text CFG", interactive=True)
                image_cfg_scale = gr.Number(value=1.5, label=f"Image CFG", interactive=True)
        with gr.Column(scale=1, min_width=100):
            with gr.Column():
                mix_image = gr.Image(label=f"Mix Image", type="pil", interactive=False)
            with gr.Column():
                edited_mask = gr.Image(label=f"Output Mask", type="pil", interactive=False)
    
    with gr.Accordion('👇 Click to see more (includes generation process per object for list generation and per step for single generation)', open=False):
        with gr.Row():
            weather_close_video = gr.Radio(
                ["Show Image Video", "Close Image Video"],
                value="Close Image Video",
                type="index",
                label="Image Generation Process Selection For Single Generation (close for faster generation)",
                interactive=True,
            )
            decode_image_batch = gr.Number(value=10, precision=0, label="Decode Image Batch (<steps)", interactive=True)
        with gr.Row():
            image_video = gr.Video(label="Image Video of Generation Process")
            mask_video = gr.Video(label="Mask Video of Generation Process")
        with gr.Row():
            original_image = gr.Image(label=f"Original Image", type="pil", interactive=False)
            edited_image = gr.Image(label=f"Output Image", type="pil", interactive=False)
            mix_result_with_red_mask = gr.Image(label=f"Mix Image With Red Mask", type="pil", interactive=False)
    
    with gr.Row():
        gr.Examples(
            examples=get_example(),
            inputs=[input_image, instruction, list_input, steps, randomize_seed, seed, randomize_cfg, text_cfg_scale, image_cfg_scale, weather_close_video, decode_image_batch],
            fn=None,
            outputs=[seed, text_cfg_scale, image_cfg_scale, edited_image, mix_image, edited_mask, mask_video, image_video, original_image, mix_result_with_red_mask],
            cache_examples = False
        )
    
    generate_button.click(
        fn=generate,
        inputs=[
            input_image,
            instruction,
            steps,
            randomize_seed,
            seed,
            randomize_cfg,
            text_cfg_scale,
            image_cfg_scale,
            weather_close_video,
            decode_image_batch
        ],
        outputs=[seed, text_cfg_scale, image_cfg_scale, edited_image, mix_image, edited_mask, mask_video, image_video, original_image, mix_result_with_red_mask],
    )

    list_generate_button.click(
        fn=generate_list,
        inputs=[
            input_image,
            list_input,
            steps,
            randomize_seed,
            seed,
            randomize_cfg,
            text_cfg_scale,
            image_cfg_scale,
            weather_close_video,
            decode_image_batch
        ],
        outputs=[seed, text_cfg_scale, image_cfg_scale, edited_image, mix_image, edited_mask, mask_video, image_video, original_image, mix_result_with_red_mask],
    )

    reset_button.click(
        fn=reset,
        inputs=[],
        outputs=[steps, randomize_seed, seed, randomize_cfg, text_cfg_scale, image_cfg_scale, edited_image, mix_image, edited_mask, mask_video, image_video, original_image, mix_result_with_red_mask, weather_close_video, decode_image_batch],
    )


# demo.queue(concurrency_count=1)
# demo.launch(share=True)


# demo.queue().launch(enable_queue=True)
demo.queue().launch()