from __future__ import annotations import spaces import math import random import sys from argparse import ArgumentParser from tqdm.auto import trange import einops import gradio as gr import k_diffusion as K import numpy as np import torch import torch.nn as nn from einops import rearrange from omegaconf import OmegaConf from PIL import Image, ImageOps, ImageFilter from torch import autocast import cv2 import imageio sys.path.append("./stable_diffusion") from stable_diffusion.ldm.util import instantiate_from_config class CFGDenoiser(nn.Module): def __init__(self, model): super().__init__() self.inner_model = model def forward(self, z_0, z_1, sigma, cond, uncond, text_cfg_scale, image_cfg_scale): cfg_z_0 = einops.repeat(z_0, "1 ... -> n ...", n=3) cfg_z_1 = einops.repeat(z_1, "1 ... -> n ...", n=3) cfg_sigma = einops.repeat(sigma, "1 ... -> n ...", n=3) cfg_cond = { "c_crossattn": [torch.cat([cond["c_crossattn"][0], uncond["c_crossattn"][0], uncond["c_crossattn"][0]])], "c_concat": [torch.cat([cond["c_concat"][0], cond["c_concat"][0], uncond["c_concat"][0]])], } output_0, output_1 = self.inner_model(cfg_z_0, cfg_z_1, cfg_sigma, cond=cfg_cond) out_cond_0, out_img_cond_0, out_uncond_0 = output_0.chunk(3) out_cond_1, _, _ = output_1.chunk(3) return out_uncond_0 + text_cfg_scale * (out_cond_0 - out_img_cond_0) + image_cfg_scale * (out_img_cond_0 - out_uncond_0), \ out_cond_1 def load_model_from_config(config, ckpt, vae_ckpt=None, verbose=False): print(f"Loading model from {ckpt}") pl_sd = torch.load(ckpt, map_location="cpu") if "global_step" in pl_sd: print(f"Global Step: {pl_sd['global_step']}") sd = pl_sd["state_dict"] if vae_ckpt is not None: print(f"Loading VAE from {vae_ckpt}") vae_sd = torch.load(vae_ckpt, map_location="cpu")["state_dict"] sd = { k: vae_sd[k[len("first_stage_model.") :]] if k.startswith("first_stage_model.") else v for k, v in sd.items() } model = instantiate_from_config(config.model) m, u = model.load_state_dict(sd, strict=True) if len(m) > 0 and verbose: print("missing keys:") print(m) if len(u) > 0 and verbose: print("unexpected keys:") print(u) return model def append_dims(x, target_dims): """Appends dimensions to the end of a tensor until it has target_dims dimensions.""" dims_to_append = target_dims - x.ndim if dims_to_append < 0: raise ValueError(f'input has {x.ndim} dims but target_dims is {target_dims}, which is less') return x[(...,) + (None,) * dims_to_append] class CompVisDenoiser(K.external.CompVisDenoiser): def __init__(self, model, quantize=False, device='cpu'): super().__init__(model, quantize, device) def get_eps(self, *args, **kwargs): return self.inner_model.apply_model(*args, **kwargs) def forward(self, input_0, input_1, sigma, **kwargs): c_out, c_in = [append_dims(x, input_0.ndim) for x in self.get_scalings(sigma)] # eps_0, eps_1 = self.get_eps(input_0 * c_in, input_1 * c_in, self.sigma_to_t(sigma), **kwargs) eps_0, eps_1 = self.get_eps(input_0 * c_in, self.sigma_to_t(sigma.cpu().float()).cuda(), **kwargs) return input_0 + eps_0 * c_out, eps_1 def to_d(x, sigma, denoised): """Converts a denoiser output to a Karras ODE derivative.""" return (x - denoised) / append_dims(sigma, x.ndim) def default_noise_sampler(x): return lambda sigma, sigma_next: torch.randn_like(x) def get_ancestral_step(sigma_from, sigma_to, eta=1.): """Calculates the noise level (sigma_down) to step down to and the amount of noise to add (sigma_up) when doing an ancestral sampling step.""" if not eta: return sigma_to, 0. sigma_up = min(sigma_to, eta * (sigma_to ** 2 * (sigma_from ** 2 - sigma_to ** 2) / sigma_from ** 2) ** 0.5) sigma_down = (sigma_to ** 2 - sigma_up ** 2) ** 0.5 return sigma_down, sigma_up def decode_mask(mask, height = 256, width = 256): mask = nn.functional.interpolate(mask, size=(height, width), mode="bilinear", align_corners=False) mask = torch.where(mask > 0, 1, -1) # Thresholding step mask = torch.clamp((mask + 1.0) / 2.0, min=0.0, max=1.0) mask = 255.0 * rearrange(mask, "1 c h w -> h w c") mask = torch.cat([mask, mask, mask], dim=-1) mask = mask.type(torch.uint8).cpu().numpy() return mask def sample_euler_ancestral(model, x_0, x_1, sigmas, height, width, extra_args=None, disable=None, eta=1., s_noise=1., noise_sampler=None): """Ancestral sampling with Euler method steps.""" extra_args = {} if extra_args is None else extra_args noise_sampler = default_noise_sampler(x_0) if noise_sampler is None else noise_sampler s_in = x_0.new_ones([x_0.shape[0]]) mask_list = [] image_list = [] for i in trange(len(sigmas) - 1, disable=disable): denoised_0, denoised_1 = model(x_0, x_1, sigmas[i] * s_in, **extra_args) image_list.append(denoised_0) sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta) d_0 = to_d(x_0, sigmas[i], denoised_0) # Euler method dt = sigma_down - sigmas[i] x_0 = x_0 + d_0 * dt if sigmas[i + 1] > 0: x_0 = x_0 + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up x_1 = denoised_1 mask_list.append(decode_mask(x_1, height, width)) image_list = torch.cat(image_list, dim=0) return x_0, x_1, image_list, mask_list parser = ArgumentParser() parser.add_argument("--resolution", default=512, type=int) parser.add_argument("--config", default="configs/generate_diffree.yaml", type=str) parser.add_argument("--ckpt", default="checkpoints/epoch=000041-step=000010999.ckpt", type=str) parser.add_argument("--vae-ckpt", default=None, type=str) args = parser.parse_args() config = OmegaConf.load(args.config) model = load_model_from_config(config, args.ckpt, args.vae_ckpt) model.eval().cuda() model_wrap = CompVisDenoiser(model) model_wrap_cfg = CFGDenoiser(model_wrap) null_token = model.get_learned_conditioning([""]) @spaces.GPU(duration=30) def generate( input_image: Image.Image, instruction: str, steps: int, randomize_seed: bool, seed: int, randomize_cfg: bool, text_cfg_scale: float, image_cfg_scale: float, weather_close_video: bool, decode_image_batch: int ): seed = random.randint(0, 100000) if randomize_seed else seed text_cfg_scale = round(random.uniform(6.0, 9.0), ndigits=2) if randomize_cfg else text_cfg_scale image_cfg_scale = round(random.uniform(1.2, 1.8), ndigits=2) if randomize_cfg else image_cfg_scale width, height = input_image.size factor = args.resolution / max(width, height) factor = math.ceil(min(width, height) * factor / 64) * 64 / min(width, height) width = int((width * factor) // 64) * 64 height = int((height * factor) // 64) * 64 input_image = ImageOps.fit(input_image, (width, height), method=Image.Resampling.LANCZOS) input_image_copy = input_image.convert("RGB") if instruction == "": return [input_image, seed] model.cuda() with torch.no_grad(), autocast("cuda"), model.ema_scope(): cond = {} cond["c_crossattn"] = [model.get_learned_conditioning([instruction]).to(model.device)] input_image = 2 * torch.tensor(np.array(input_image)).float() / 255 - 1 input_image = rearrange(input_image, "h w c -> 1 c h w").to(model.device) cond["c_concat"] = [model.encode_first_stage(input_image).mode().to(model.device)] uncond = {} uncond["c_crossattn"] = [null_token.to(model.device)] uncond["c_concat"] = [torch.zeros_like(cond["c_concat"][0])] sigmas = model_wrap.get_sigmas(steps).to(model.device) extra_args = { "cond": cond, "uncond": uncond, "text_cfg_scale": text_cfg_scale, "image_cfg_scale": image_cfg_scale, } torch.manual_seed(seed) z_0 = torch.randn_like(cond["c_concat"][0]).to(model.device) * sigmas[0] z_1 = torch.randn_like(cond["c_concat"][0]).to(model.device) * sigmas[0] z_0, z_1, image_list, mask_list = sample_euler_ancestral(model_wrap_cfg, z_0, z_1, sigmas, height, width, extra_args=extra_args) x_0 = model.decode_first_stage(z_0) if model.first_stage_downsample: x_1 = nn.functional.interpolate(z_1, size=(height, width), mode="bilinear", align_corners=False) x_1 = torch.where(x_1 > 0, 1, -1) # Thresholding step else: x_1 = model.decode_first_stage(z_1) x_0 = torch.clamp((x_0 + 1.0) / 2.0, min=0.0, max=1.0) x_1 = torch.clamp((x_1 + 1.0) / 2.0, min=0.0, max=1.0) x_0 = 255.0 * rearrange(x_0, "1 c h w -> h w c") x_1 = 255.0 * rearrange(x_1, "1 c h w -> h w c") x_1 = torch.cat([x_1, x_1, x_1], dim=-1) edited_image = Image.fromarray(x_0.type(torch.uint8).cpu().numpy()) edited_mask = Image.fromarray(x_1.type(torch.uint8).cpu().numpy()) image_video_path = None if not weather_close_video: image_video = [] for i in range(0, len(image_list), decode_image_batch): if i + decode_image_batch < len(image_list): tmp_image_list = image_list[i:i+decode_image_batch] else: tmp_image_list = image_list[i:] tmp_image_list = model.decode_first_stage(tmp_image_list) tmp_image_list = torch.clamp((tmp_image_list + 1.0) / 2.0, min=0.0, max=1.0) tmp_image_list = 255.0 * rearrange(tmp_image_list, "b c h w -> b h w c") tmp_image_list = tmp_image_list.type(torch.uint8).cpu().numpy() # image list to image for image in tmp_image_list: image_video.append(image) image_video_path = "image.mp4" fps = 30 with imageio.get_writer(image_video_path, fps=fps) as video: for image in image_video: video.append_data(image) edited_mask_copy = edited_mask.copy() kernel = np.ones((3, 3), np.uint8) edited_mask = cv2.dilate(np.array(edited_mask), kernel, iterations=3) edited_mask = Image.fromarray(edited_mask) m_img = edited_mask.filter(ImageFilter.GaussianBlur(radius=3)) m_img = np.asarray(m_img).astype('float') / 255.0 img_np = np.asarray(input_image_copy).astype('float') / 255.0 ours_np = np.asarray(edited_image).astype('float') / 255.0 mix_image_np = m_img * ours_np + (1 - m_img) * img_np mix_image = Image.fromarray((mix_image_np * 255).astype(np.uint8)).convert('RGB') red = np.array(mix_image).astype('float') * 1 red[:, :, 0] = 180.0 red[:, :, 2] = 0 red[:, :, 1] = 0 mix_result_with_red_mask = np.array(mix_image) mix_result_with_red_mask = Image.fromarray( (mix_result_with_red_mask.astype('float') * (1 - m_img.astype('float') / 2.0) + m_img.astype('float') / 2.0 * red).astype('uint8')) mask_video_path = "mask.mp4" fps = 30 with imageio.get_writer(mask_video_path, fps=fps) as video: for image in mask_list: video.append_data(image) return [int(seed), text_cfg_scale, image_cfg_scale, edited_image, mix_image, edited_mask_copy, mask_video_path, image_video_path, input_image_copy, mix_result_with_red_mask] def single_generation(model_wrap_cfg, input_image_copy, instruction, steps, seed, text_cfg_scale, image_cfg_scale, height, width): model.cuda() with torch.no_grad(), autocast("cuda"), model.ema_scope(): cond = {} input_image_torch = 2 * torch.tensor(np.array(input_image_copy.to(model.device))).float() / 255 - 1 input_image_torch = rearrange(input_image_torch, "h w c -> 1 c h w").to(model.device) cond["c_crossattn"] = [model.get_learned_conditioning([instruction]).to(model.device)] cond["c_concat"] = [model.encode_first_stage(input_image_torch).mode().to(model.device)] uncond = {} uncond["c_crossattn"] = [null_token.to(model.device)] uncond["c_concat"] = [torch.zeros_like(cond["c_concat"][0])] sigmas = model_wrap.get_sigmas(steps).to(model.device) extra_args = { "cond": cond, "uncond": uncond, "text_cfg_scale": text_cfg_scale, "image_cfg_scale": image_cfg_scale, } torch.manual_seed(seed) z_0 = torch.randn_like(cond["c_concat"][0]).to(model.device) * sigmas[0] z_1 = torch.randn_like(cond["c_concat"][0]).to(model.device) * sigmas[0] z_0, z_1, _, _ = sample_euler_ancestral(model_wrap_cfg, z_0, z_1, sigmas, height, width, extra_args=extra_args) x_0 = model.decode_first_stage(z_0) x_1 = nn.functional.interpolate(z_1, size=(height, width), mode="bilinear", align_corners=False) x_1 = torch.where(x_1 > 0, 1, -1) # Thresholding step x_1_mean = torch.sum(x_1).item()/x_1.numel() return x_0, x_1, x_1_mean @spaces.GPU(duration=150) def generate_list( input_image: Image.Image, generate_list: str, steps: int, randomize_seed: bool, seed: int, randomize_cfg: bool, text_cfg_scale: float, image_cfg_scale: float, weather_close_video: bool, decode_image_batch: int ): generate_list = generate_list.split('\n') # Remove the empty element generate_list = [element for element in generate_list if element] seed = random.randint(0, 100000) if randomize_seed else seed text_cfg_scale = round(random.uniform(6.0, 9.0), ndigits=2) if randomize_cfg else text_cfg_scale image_cfg_scale = round(random.uniform(1.2, 1.8), ndigits=2) if randomize_cfg else image_cfg_scale width, height = input_image.size factor = args.resolution / max(width, height) factor = math.ceil(min(width, height) * factor / 64) * 64 / min(width, height) width = int((width * factor) // 64) * 64 height = int((height * factor) // 64) * 64 input_image = ImageOps.fit(input_image, (width, height), method=Image.Resampling.LANCZOS) if len(generate_list) == 0: return [input_image, seed] model.cuda() image_video = [np.array(input_image).astype(np.uint8)] generate_index = 0 retry_number = 0 max_retry = 10 input_image_copy = input_image.convert("RGB") while generate_index < len(generate_list): print(f'generate_index: {str(generate_index)}') instruction = generate_list[generate_index] # x_0, x_1, x_1_mean = single_generation(model_wrap_cfg, input_image_copy, instruction, steps, seed, text_cfg_scale, image_cfg_scale, height, width) with torch.no_grad(), autocast("cuda"), model.ema_scope(): cond = {} input_image_torch = 2 * torch.tensor(np.array(input_image_copy)).float() / 255 - 1 input_image_torch = rearrange(input_image_torch, "h w c -> 1 c h w").to(model.device) cond["c_crossattn"] = [model.get_learned_conditioning([instruction]).to(model.device)] cond["c_concat"] = [model.encode_first_stage(input_image_torch).mode().to(model.device)] uncond = {} uncond["c_crossattn"] = [null_token.to(model.device)] uncond["c_concat"] = [torch.zeros_like(cond["c_concat"][0])] sigmas = model_wrap.get_sigmas(steps).to(model.device) extra_args = { "cond": cond, "uncond": uncond, "text_cfg_scale": text_cfg_scale, "image_cfg_scale": image_cfg_scale, } torch.manual_seed(seed) z_0 = torch.randn_like(cond["c_concat"][0]).to(model.device) * sigmas[0] z_1 = torch.randn_like(cond["c_concat"][0]).to(model.device) * sigmas[0] z_0, z_1, _, _ = sample_euler_ancestral(model_wrap_cfg, z_0, z_1, sigmas, height, width, extra_args=extra_args) x_0 = model.decode_first_stage(z_0) x_1 = nn.functional.interpolate(z_1, size=(height, width), mode="bilinear", align_corners=False) x_1 = torch.where(x_1 > 0, 1, -1) # Thresholding step x_1_mean = torch.sum(x_1).item()/x_1.numel() if x_1_mean < -0.99: seed += 1 retry_number +=1 if retry_number > max_retry: generate_index += 1 continue else: generate_index += 1 x_0 = torch.clamp((x_0 + 1.0) / 2.0, min=0.0, max=1.0) x_1 = torch.clamp((x_1 + 1.0) / 2.0, min=0.0, max=1.0) x_0 = 255.0 * rearrange(x_0, "1 c h w -> h w c") x_1 = 255.0 * rearrange(x_1, "1 c h w -> h w c") x_1 = torch.cat([x_1, x_1, x_1], dim=-1) edited_image = Image.fromarray(x_0.type(torch.uint8).cpu().numpy()) edited_mask = Image.fromarray(x_1.type(torch.uint8).cpu().numpy()) # 对edited_mask做膨胀 edited_mask_copy = edited_mask.copy() kernel = np.ones((3, 3), np.uint8) edited_mask = cv2.dilate(np.array(edited_mask), kernel, iterations=3) edited_mask = Image.fromarray(edited_mask) m_img = edited_mask.filter(ImageFilter.GaussianBlur(radius=3)) m_img = np.asarray(m_img).astype('float') / 255.0 img_np = np.asarray(input_image_copy).astype('float') / 255.0 ours_np = np.asarray(edited_image).astype('float') / 255.0 mix_image_np = m_img * ours_np + (1 - m_img) * img_np image_video.append((mix_image_np * 255).astype(np.uint8)) mix_image = Image.fromarray((mix_image_np * 255).astype(np.uint8)).convert('RGB') mix_result_with_red_mask = None mask_video_path = None image_video_path = None edited_mask_copy = None if generate_index == len(generate_list): image_video_path = "image.mp4" fps = 2 with imageio.get_writer(image_video_path, fps=fps) as video: for image in image_video: video.append_data(image) yield [int(seed), text_cfg_scale, image_cfg_scale, edited_image, mix_image, edited_mask_copy, mask_video_path, image_video_path, input_image, mix_result_with_red_mask] input_image_copy = mix_image def reset(): return [100, "Randomize Seed", 1372, "Fix CFG", 7.5, 1.5, None, None, None, None, None, None, None, "Close Image Video", 10] def get_example(): return [ ["example_images/dufu.png", "", "black and white suit\nsunglasses\nblue medical mask\nyellow schoolbag\nred bow tie\nbrown high-top hat", 100, "Fix Seed", 1372, "Fix CFG", 7.5, 1.5], ["example_images/girl.jpeg", "", "reflective sunglasses\nshiny golden crown\ndiamond necklace\ngorgeous yellow gown", 100, "Fix Seed", 1372, "Fix CFG", 7.5, 1.5], ["example_images/dufu.png", "black and white suit", "", 100, "Fix Seed", 1372, "Fix CFG", 7.5, 1.5], ["example_images/girl.jpeg", "reflective sunglasses", "", 100, "Fix Seed", 1372, "Fix CFG", 7.5, 1.5], ["example_images/road_sign.png", "stop sign", "", 100, "Fix Seed", 1372, "Fix CFG", 7.5, 1.5], ["example_images/dufu.png", "blue medical mask", "", 100, "Fix Seed", 1372, "Fix CFG", 7.5, 1.5], ["example_images/people_standing.png", "dark green pleated skirt", "", 100, "Fix Seed", 1372, "Fix CFG", 7.5, 1.5], ["example_images/girl.jpeg", "shiny golden crown", "", 100, "Fix Seed", 1372, "Fix CFG", 7.5, 1.5], ["example_images/dufu.png", "sunglasses", "", 100, "Fix Seed", 1372, "Fix CFG", 7.5, 1.5], ["example_images/girl.jpeg", "diamond necklace", "", 100, "Fix Seed", 1372, "Fix CFG", 7.5, 1.5], ["example_images/iron_man.jpg", "sunglasses", "", 100, "Fix Seed", 1372, "Fix CFG", 7.5, 1.5], ["example_images/girl.jpeg", "the queen's crown", "", 100, "Fix Seed", 1372, "Fix CFG", 7.5, 1.5], ["example_images/girl.jpeg", "gorgeous yellow gown", "", 100, "Fix Seed", 1372, "Fix CFG", 7.5, 1.5], ] with gr.Blocks(css="footer {visibility: hidden}") as demo: with gr.Row(): gr.Markdown( "