Spaces:
Runtime error
Runtime error
File size: 14,767 Bytes
69a6cef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 |
import datetime
import glob
import json
import logging
import os.path
import random
import re
import shutil
import zipfile
from contextlib import contextmanager
from textwrap import dedent
from typing import Iterator
import numpy as np
import pandas as pd
from hbutils.string import plural_word
from hbutils.system import TemporaryDirectory
from huggingface_hub import CommitOperationAdd, CommitOperationDelete
from imgutils.data import load_image
from imgutils.metrics import ccip_extract_feature, ccip_batch_differences, ccip_default_threshold
from natsort import natsorted
from sklearn.cluster import OPTICS
from tqdm.auto import tqdm
from waifuc.action import PaddingAlignAction, PersonSplitAction, FaceCountAction, MinSizeFilterAction, \
NoMonochromeAction, FilterSimilarAction, HeadCountAction, FileOrderAction, TaggingAction, RandomFilenameAction, \
BackgroundRemovalAction, ModeConvertAction, FileExtAction
from waifuc.action.filter import MinAreaFilterAction
from waifuc.export import SaveExporter, TextualInversionExporter
from waifuc.model import ImageItem
from waifuc.source import VideoSource, BaseDataSource, LocalSource, EmptySource
from ...utils import number_to_tag, get_hf_client, get_hf_fs
class ListFeatImageSource(BaseDataSource):
def __init__(self, image_files, feats):
self.image_files = image_files
self.feats = feats
def _iter(self) -> Iterator[ImageItem]:
for file, feat in zip(self.image_files, self.feats):
yield ImageItem(load_image(file), {'ccip_feature': feat, 'filename': os.path.basename(file)})
def cluster_from_directory(src_dir, dst_dir, merge_threshold: float = 0.85, clu_min_samples: int = 5,
extract_from_noise: bool = True):
image_files = np.array(natsorted(glob.glob(os.path.join(src_dir, '*.png'))))
logging.info(f'Extracting feature of {plural_word(len(image_files), "images")} ...')
images = [ccip_extract_feature(img) for img in tqdm(image_files, desc='Extract features')]
batch_diff = ccip_batch_differences(images)
batch_same = batch_diff <= ccip_default_threshold()
# clustering
def _metric(x, y):
return batch_diff[int(x), int(y)].item()
logging.info('Clustering ...')
samples = np.arange(len(images)).reshape(-1, 1)
# max_eps, _ = ccip_default_clustering_params(method='optics_best')
clustering = OPTICS(min_samples=clu_min_samples, metric=_metric).fit(samples)
labels = clustering.labels_
max_clu_id = labels.max().item()
all_label_ids = np.array([-1, *range(0, max_clu_id + 1)])
logging.info(f'Cluster complete, with {plural_word(max_clu_id, "cluster")}.')
label_cnt = {i: (labels == i).sum() for i in all_label_ids if (labels == i).sum() > 0}
logging.info(f'Current label count: {label_cnt}')
if extract_from_noise:
mask_labels = labels.copy()
for nid in tqdm(np.where(labels == -1)[0], desc='Matching for noises'):
avg_dists = np.array([
batch_diff[nid][labels == i].mean()
for i in range(0, max_clu_id + 1)
])
r_sames = np.array([
batch_same[nid][labels == i].mean()
for i in range(0, max_clu_id + 1)
])
best_id = np.argmin(avg_dists)
if r_sames[best_id] >= 0.90:
mask_labels[nid] = best_id
labels = mask_labels
logging.info('Noise extracting complete.')
label_cnt = {i: (labels == i).sum() for i in all_label_ids if (labels == i).sum() > 0}
logging.info(f'Current label count: {label_cnt}')
# trying to merge clusters
_exist_ids = set(range(0, max_clu_id + 1))
while True:
_round_merged = False
for xi in range(0, max_clu_id + 1):
if xi not in _exist_ids:
continue
for yi in range(xi + 1, max_clu_id + 1):
if yi not in _exist_ids:
continue
score = (batch_same[labels == xi][:, labels == yi]).mean()
logging.info(f'Label {xi} and {yi}\'s similarity score: {score}')
if score >= merge_threshold:
labels[labels == yi] = xi
logging.info(f'Merging label {yi} into {xi} ...')
_exist_ids.remove(yi)
_round_merged = True
if not _round_merged:
break
logging.info(f'Merge complete, remained cluster ids: {sorted(_exist_ids)}.')
label_cnt = {i: (labels == i).sum() for i in all_label_ids if (labels == i).sum() > 0}
logging.info(f'Current label count: {label_cnt}')
ids = []
for i, clu_id in enumerate(tqdm(sorted(_exist_ids))):
total = (labels == clu_id).sum()
logging.info(f'Cluster {clu_id} will be renamed as #{i}, {plural_word(total, "image")} in total.')
os.makedirs(os.path.join(dst_dir, str(i)), exist_ok=True)
for imgfile in image_files[labels == clu_id]:
shutil.copyfile(imgfile, os.path.join(dst_dir, str(i), os.path.basename(imgfile)))
ids.append(i)
n_total = (labels == -1).sum()
if n_total > 0:
logging.info(f'Save noise images, {plural_word(n_total, "image")} in total.')
os.makedirs(os.path.join(dst_dir, str(-1)), exist_ok=True)
for imgfile in image_files[labels == -1]:
shutil.copyfile(imgfile, os.path.join(dst_dir, str(-1), os.path.basename(imgfile)))
ids.append(-1)
return ids
def create_project_by_result(bangumi_name: str, ids, clu_dir, dst_dir, preview_count: int = 8, regsize: int = 1000):
total_image_cnt = 0
columns = ['#', 'Images', 'Download', *(f'Preview {i}' for i in range(1, preview_count + 1))]
rows = []
reg_source = EmptySource()
for id_ in ids:
logging.info(f'Packing for #{id_} ...')
person_dir = os.path.join(dst_dir, str(id_))
new_reg_source = LocalSource(os.path.join(clu_dir, str(id_)), shuffle=True).attach(
MinAreaFilterAction(400)
)
reg_source = reg_source | new_reg_source
os.makedirs(person_dir, exist_ok=True)
with zipfile.ZipFile(os.path.join(person_dir, 'dataset.zip'), 'w') as zf:
all_person_images = glob.glob(os.path.join(clu_dir, str(id_), '*.png'))
total_image_cnt += len(all_person_images)
for file in all_person_images:
zf.write(file, os.path.basename(file))
for i, file in enumerate(random.sample(all_person_images, k=min(len(all_person_images), preview_count)),
start=1):
PaddingAlignAction((512, 704))(ImageItem(load_image(file))) \
.image.save(os.path.join(person_dir, f'preview_{i}.png'))
rel_zip_path = os.path.relpath(os.path.join(person_dir, 'dataset.zip'), dst_dir)
row = [id_ if id_ != -1 else 'noise', len(all_person_images), f'[Download]({rel_zip_path})']
for i in range(1, preview_count + 1):
if os.path.exists(os.path.join(person_dir, f'preview_{i}.png')):
relpath = os.path.relpath(os.path.join(person_dir, f'preview_{i}.png'), dst_dir)
row.append(f'![preview {i}]({relpath})')
else:
row.append('N/A')
rows.append(row)
with TemporaryDirectory() as td:
logging.info('Creating regular normal dataset ...')
reg_source.attach(
TaggingAction(force=False, character_threshold=1.01),
RandomFilenameAction(),
)[:regsize].export(TextualInversionExporter(td))
logging.info('Packing regular normal dataset ...')
reg_zip = os.path.join(dst_dir, 'regular', 'normal.zip')
os.makedirs(os.path.dirname(reg_zip), exist_ok=True)
with zipfile.ZipFile(reg_zip, 'w') as zf:
for file in glob.glob(os.path.join(td, '*')):
zf.write(file, os.path.relpath(file, td))
with TemporaryDirectory() as td_nobg:
logging.info('Creating regular no-background dataset ...')
LocalSource(td).attach(
BackgroundRemovalAction(),
ModeConvertAction('RGB', 'white'),
TaggingAction(force=True, character_threshold=1.01),
FileExtAction('.png'),
).export(TextualInversionExporter(td_nobg))
logging.info('Packing regular no-background dataset ...')
reg_nobg_zip = os.path.join(dst_dir, 'regular', 'nobg.zip')
os.makedirs(os.path.dirname(reg_nobg_zip), exist_ok=True)
with zipfile.ZipFile(reg_nobg_zip, 'w') as zf:
for file in glob.glob(os.path.join(td_nobg, '*')):
zf.write(file, os.path.relpath(file, td_nobg))
logging.info('Packing all images ...')
all_zip = os.path.join(dst_dir, 'all.zip')
with zipfile.ZipFile(all_zip, 'w') as zf:
for file in glob.glob(os.path.join(clu_dir, '*', '*.png')):
zf.write(file, os.path.relpath(file, clu_dir))
logging.info('Packing raw package ...')
raw_zip = os.path.join(dst_dir, 'raw.zip')
with zipfile.ZipFile(raw_zip, 'w') as zf:
for file in glob.glob(os.path.join(clu_dir, '*', '*.png')):
zf.write(file, os.path.basename(file))
with open(os.path.join(dst_dir, 'meta.json'), 'w', encoding='utf-8') as f:
json.dump({
'name': bangumi_name,
'ids': ids,
'total': total_image_cnt,
}, f, indent=4, sort_keys=True, ensure_ascii=False)
with open(os.path.join(dst_dir, 'README.md'), 'w', encoding='utf-8') as f:
print(dedent(f"""
---
license: mit
tags:
- art
size_categories:
- {number_to_tag(total_image_cnt)}
---
""").strip(), file=f)
print('', file=f)
c_name = ' '.join(map(str.capitalize, re.split(r'\s+', bangumi_name)))
print(f'# Bangumi Image Base of {c_name}', file=f)
print('', file=f)
print(f'This is the image base of bangumi {bangumi_name}, '
f'we detected {plural_word(len(ids), "character")}, '
f'{plural_word(total_image_cnt, "images")} in total. '
f'The full dataset is [here]({os.path.relpath(all_zip, dst_dir)}).', file=f)
print('', file=f)
print(f'**Please note that these image bases are not guaranteed to be 100% cleaned, '
f'they may be noisy actual.** If you intend to manually train models using this dataset, '
f'we recommend performing necessary preprocessing on the downloaded dataset to eliminate '
f'potential noisy samples (approximately 1% probability).', file=f)
print('', file=f)
print(f'Here is the characters\' preview:', file=f)
print('', file=f)
df = pd.DataFrame(columns=columns, data=rows)
print(df.to_markdown(index=False), file=f)
print('', file=f)
@contextmanager
def extract_from_videos(video_or_directory: str, bangumi_name: str, no_extract: bool = False,
min_size: int = 320, merge_threshold: float = 0.85, preview_count: int = 8):
if no_extract:
source = LocalSource(video_or_directory)
else:
if os.path.isfile(video_or_directory):
source = VideoSource(video_or_directory)
elif os.path.isdir(video_or_directory):
source = VideoSource.from_directory(video_or_directory)
else:
raise TypeError(f'Unknown video - {video_or_directory!r}.')
source = source.attach(
NoMonochromeAction(),
PersonSplitAction(keep_original=False, level='n'),
FaceCountAction(1, level='n'),
HeadCountAction(1, level='n'),
MinSizeFilterAction(min_size),
FilterSimilarAction('all'),
FileOrderAction(ext='.png'),
)
with TemporaryDirectory() as src_dir:
logging.info('Extract figures from videos ...')
source.export(SaveExporter(src_dir, no_meta=True))
with TemporaryDirectory() as clu_dir:
logging.info(f'Clustering from {src_dir!r} to {clu_dir!r} ...')
ids = cluster_from_directory(src_dir, clu_dir, merge_threshold)
with TemporaryDirectory() as dst_dir:
create_project_by_result(bangumi_name, ids, clu_dir, dst_dir, preview_count)
yield dst_dir
def extract_to_huggingface(video_or_directory: str, bangumi_name: str,
repository: str, revision: str = 'main', no_extract: bool = False,
min_size: int = 320, merge_threshold: float = 0.85, preview_count: int = 8):
logging.info(f'Initializing repository {repository!r} ...')
hf_client = get_hf_client()
hf_fs = get_hf_fs()
if not hf_fs.exists(f'datasets/{repository}/.gitattributes'):
hf_client.create_repo(repo_id=repository, repo_type='dataset', exist_ok=True)
_exist_files = [os.path.relpath(file, repository) for file in hf_fs.glob(f'{repository}/**')]
_exist_ps = sorted([(file, file.split('/')) for file in _exist_files], key=lambda x: x[1])
pre_exist_files = set()
for i, (file, segments) in enumerate(_exist_ps):
if i < len(_exist_ps) - 1 and segments == _exist_ps[i + 1][1][:len(segments)]:
continue
if file != '.':
pre_exist_files.add(file)
with extract_from_videos(video_or_directory, bangumi_name, no_extract,
min_size, merge_threshold, preview_count) as dst_dir:
operations = []
for directory, _, files in os.walk(dst_dir):
for file in files:
filename = os.path.abspath(os.path.join(dst_dir, directory, file))
file_in_repo = os.path.relpath(filename, dst_dir)
operations.append(CommitOperationAdd(
path_in_repo=file_in_repo,
path_or_fileobj=filename,
))
if file_in_repo in pre_exist_files:
pre_exist_files.remove(file_in_repo)
logging.info(f'Useless files: {sorted(pre_exist_files)} ...')
for file in sorted(pre_exist_files):
operations.append(CommitOperationDelete(path_in_repo=file))
current_time = datetime.datetime.now().astimezone().strftime('%Y-%m-%d %H:%M:%S %Z')
commit_message = f'Publish {bangumi_name}\'s data, on {current_time}'
logging.info(f'Publishing {bangumi_name}\'s data to repository {repository!r} ...')
hf_client.create_commit(
repository,
operations,
commit_message=commit_message,
repo_type='dataset',
revision=revision,
)
|