File size: 14,767 Bytes
69a6cef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
import datetime
import glob
import json
import logging
import os.path
import random
import re
import shutil
import zipfile
from contextlib import contextmanager
from textwrap import dedent
from typing import Iterator

import numpy as np
import pandas as pd
from hbutils.string import plural_word
from hbutils.system import TemporaryDirectory
from huggingface_hub import CommitOperationAdd, CommitOperationDelete
from imgutils.data import load_image
from imgutils.metrics import ccip_extract_feature, ccip_batch_differences, ccip_default_threshold
from natsort import natsorted
from sklearn.cluster import OPTICS
from tqdm.auto import tqdm
from waifuc.action import PaddingAlignAction, PersonSplitAction, FaceCountAction, MinSizeFilterAction, \
    NoMonochromeAction, FilterSimilarAction, HeadCountAction, FileOrderAction, TaggingAction, RandomFilenameAction, \
    BackgroundRemovalAction, ModeConvertAction, FileExtAction
from waifuc.action.filter import MinAreaFilterAction
from waifuc.export import SaveExporter, TextualInversionExporter
from waifuc.model import ImageItem
from waifuc.source import VideoSource, BaseDataSource, LocalSource, EmptySource

from ...utils import number_to_tag, get_hf_client, get_hf_fs


class ListFeatImageSource(BaseDataSource):
    def __init__(self, image_files, feats):
        self.image_files = image_files
        self.feats = feats

    def _iter(self) -> Iterator[ImageItem]:
        for file, feat in zip(self.image_files, self.feats):
            yield ImageItem(load_image(file), {'ccip_feature': feat, 'filename': os.path.basename(file)})


def cluster_from_directory(src_dir, dst_dir, merge_threshold: float = 0.85, clu_min_samples: int = 5,
                           extract_from_noise: bool = True):
    image_files = np.array(natsorted(glob.glob(os.path.join(src_dir, '*.png'))))

    logging.info(f'Extracting feature of {plural_word(len(image_files), "images")} ...')
    images = [ccip_extract_feature(img) for img in tqdm(image_files, desc='Extract features')]
    batch_diff = ccip_batch_differences(images)
    batch_same = batch_diff <= ccip_default_threshold()

    # clustering
    def _metric(x, y):
        return batch_diff[int(x), int(y)].item()

    logging.info('Clustering ...')
    samples = np.arange(len(images)).reshape(-1, 1)
    # max_eps, _ = ccip_default_clustering_params(method='optics_best')
    clustering = OPTICS(min_samples=clu_min_samples, metric=_metric).fit(samples)
    labels = clustering.labels_

    max_clu_id = labels.max().item()
    all_label_ids = np.array([-1, *range(0, max_clu_id + 1)])
    logging.info(f'Cluster complete, with {plural_word(max_clu_id, "cluster")}.')
    label_cnt = {i: (labels == i).sum() for i in all_label_ids if (labels == i).sum() > 0}
    logging.info(f'Current label count: {label_cnt}')

    if extract_from_noise:
        mask_labels = labels.copy()
        for nid in tqdm(np.where(labels == -1)[0], desc='Matching for noises'):
            avg_dists = np.array([
                batch_diff[nid][labels == i].mean()
                for i in range(0, max_clu_id + 1)
            ])
            r_sames = np.array([
                batch_same[nid][labels == i].mean()
                for i in range(0, max_clu_id + 1)
            ])
            best_id = np.argmin(avg_dists)
            if r_sames[best_id] >= 0.90:
                mask_labels[nid] = best_id
        labels = mask_labels
        logging.info('Noise extracting complete.')
        label_cnt = {i: (labels == i).sum() for i in all_label_ids if (labels == i).sum() > 0}
        logging.info(f'Current label count: {label_cnt}')

    # trying to merge clusters
    _exist_ids = set(range(0, max_clu_id + 1))
    while True:
        _round_merged = False
        for xi in range(0, max_clu_id + 1):
            if xi not in _exist_ids:
                continue
            for yi in range(xi + 1, max_clu_id + 1):
                if yi not in _exist_ids:
                    continue

                score = (batch_same[labels == xi][:, labels == yi]).mean()
                logging.info(f'Label {xi} and {yi}\'s similarity score: {score}')
                if score >= merge_threshold:
                    labels[labels == yi] = xi
                    logging.info(f'Merging label {yi} into {xi} ...')
                    _exist_ids.remove(yi)
                    _round_merged = True

        if not _round_merged:
            break

    logging.info(f'Merge complete, remained cluster ids: {sorted(_exist_ids)}.')
    label_cnt = {i: (labels == i).sum() for i in all_label_ids if (labels == i).sum() > 0}
    logging.info(f'Current label count: {label_cnt}')
    ids = []
    for i, clu_id in enumerate(tqdm(sorted(_exist_ids))):
        total = (labels == clu_id).sum()
        logging.info(f'Cluster {clu_id} will be renamed as #{i}, {plural_word(total, "image")} in total.')
        os.makedirs(os.path.join(dst_dir, str(i)), exist_ok=True)
        for imgfile in image_files[labels == clu_id]:
            shutil.copyfile(imgfile, os.path.join(dst_dir, str(i), os.path.basename(imgfile)))
        ids.append(i)

    n_total = (labels == -1).sum()
    if n_total > 0:
        logging.info(f'Save noise images, {plural_word(n_total, "image")} in total.')
        os.makedirs(os.path.join(dst_dir, str(-1)), exist_ok=True)
        for imgfile in image_files[labels == -1]:
            shutil.copyfile(imgfile, os.path.join(dst_dir, str(-1), os.path.basename(imgfile)))
        ids.append(-1)

    return ids


def create_project_by_result(bangumi_name: str, ids, clu_dir, dst_dir, preview_count: int = 8, regsize: int = 1000):
    total_image_cnt = 0
    columns = ['#', 'Images', 'Download', *(f'Preview {i}' for i in range(1, preview_count + 1))]
    rows = []
    reg_source = EmptySource()
    for id_ in ids:
        logging.info(f'Packing for #{id_} ...')
        person_dir = os.path.join(dst_dir, str(id_))
        new_reg_source = LocalSource(os.path.join(clu_dir, str(id_)), shuffle=True).attach(
            MinAreaFilterAction(400)
        )
        reg_source = reg_source | new_reg_source
        os.makedirs(person_dir, exist_ok=True)
        with zipfile.ZipFile(os.path.join(person_dir, 'dataset.zip'), 'w') as zf:
            all_person_images = glob.glob(os.path.join(clu_dir, str(id_), '*.png'))
            total_image_cnt += len(all_person_images)
            for file in all_person_images:
                zf.write(file, os.path.basename(file))

        for i, file in enumerate(random.sample(all_person_images, k=min(len(all_person_images), preview_count)),
                                 start=1):
            PaddingAlignAction((512, 704))(ImageItem(load_image(file))) \
                .image.save(os.path.join(person_dir, f'preview_{i}.png'))

        rel_zip_path = os.path.relpath(os.path.join(person_dir, 'dataset.zip'), dst_dir)
        row = [id_ if id_ != -1 else 'noise', len(all_person_images), f'[Download]({rel_zip_path})']
        for i in range(1, preview_count + 1):
            if os.path.exists(os.path.join(person_dir, f'preview_{i}.png')):
                relpath = os.path.relpath(os.path.join(person_dir, f'preview_{i}.png'), dst_dir)
                row.append(f'![preview {i}]({relpath})')
            else:
                row.append('N/A')
        rows.append(row)

    with TemporaryDirectory() as td:
        logging.info('Creating regular normal dataset ...')
        reg_source.attach(
            TaggingAction(force=False, character_threshold=1.01),
            RandomFilenameAction(),
        )[:regsize].export(TextualInversionExporter(td))

        logging.info('Packing regular normal dataset ...')
        reg_zip = os.path.join(dst_dir, 'regular', 'normal.zip')
        os.makedirs(os.path.dirname(reg_zip), exist_ok=True)
        with zipfile.ZipFile(reg_zip, 'w') as zf:
            for file in glob.glob(os.path.join(td, '*')):
                zf.write(file, os.path.relpath(file, td))

        with TemporaryDirectory() as td_nobg:
            logging.info('Creating regular no-background dataset ...')
            LocalSource(td).attach(
                BackgroundRemovalAction(),
                ModeConvertAction('RGB', 'white'),
                TaggingAction(force=True, character_threshold=1.01),
                FileExtAction('.png'),
            ).export(TextualInversionExporter(td_nobg))

            logging.info('Packing regular no-background dataset ...')
            reg_nobg_zip = os.path.join(dst_dir, 'regular', 'nobg.zip')
            os.makedirs(os.path.dirname(reg_nobg_zip), exist_ok=True)
            with zipfile.ZipFile(reg_nobg_zip, 'w') as zf:
                for file in glob.glob(os.path.join(td_nobg, '*')):
                    zf.write(file, os.path.relpath(file, td_nobg))

    logging.info('Packing all images ...')
    all_zip = os.path.join(dst_dir, 'all.zip')
    with zipfile.ZipFile(all_zip, 'w') as zf:
        for file in glob.glob(os.path.join(clu_dir, '*', '*.png')):
            zf.write(file, os.path.relpath(file, clu_dir))

    logging.info('Packing raw package ...')
    raw_zip = os.path.join(dst_dir, 'raw.zip')
    with zipfile.ZipFile(raw_zip, 'w') as zf:
        for file in glob.glob(os.path.join(clu_dir, '*', '*.png')):
            zf.write(file, os.path.basename(file))

    with open(os.path.join(dst_dir, 'meta.json'), 'w', encoding='utf-8') as f:
        json.dump({
            'name': bangumi_name,
            'ids': ids,
            'total': total_image_cnt,
        }, f, indent=4, sort_keys=True, ensure_ascii=False)

    with open(os.path.join(dst_dir, 'README.md'), 'w', encoding='utf-8') as f:
        print(dedent(f"""
        ---
        license: mit
        tags:
        - art
        size_categories:
        - {number_to_tag(total_image_cnt)}
        ---
        """).strip(), file=f)
        print('', file=f)

        c_name = ' '.join(map(str.capitalize, re.split(r'\s+', bangumi_name)))
        print(f'# Bangumi Image Base of {c_name}', file=f)
        print('', file=f)

        print(f'This is the image base of bangumi {bangumi_name}, '
              f'we detected {plural_word(len(ids), "character")}, '
              f'{plural_word(total_image_cnt, "images")} in total. '
              f'The full dataset is [here]({os.path.relpath(all_zip, dst_dir)}).', file=f)
        print('', file=f)

        print(f'**Please note that these image bases are not guaranteed to be 100% cleaned, '
              f'they may be noisy actual.** If you intend to manually train models using this dataset, '
              f'we recommend performing necessary preprocessing on the downloaded dataset to eliminate '
              f'potential noisy samples (approximately 1% probability).', file=f)
        print('', file=f)

        print(f'Here is the characters\' preview:', file=f)
        print('', file=f)

        df = pd.DataFrame(columns=columns, data=rows)
        print(df.to_markdown(index=False), file=f)
        print('', file=f)


@contextmanager
def extract_from_videos(video_or_directory: str, bangumi_name: str, no_extract: bool = False,
                        min_size: int = 320, merge_threshold: float = 0.85, preview_count: int = 8):
    if no_extract:
        source = LocalSource(video_or_directory)
    else:
        if os.path.isfile(video_or_directory):
            source = VideoSource(video_or_directory)
        elif os.path.isdir(video_or_directory):
            source = VideoSource.from_directory(video_or_directory)
        else:
            raise TypeError(f'Unknown video - {video_or_directory!r}.')

        source = source.attach(
            NoMonochromeAction(),
            PersonSplitAction(keep_original=False, level='n'),
            FaceCountAction(1, level='n'),
            HeadCountAction(1, level='n'),
            MinSizeFilterAction(min_size),
            FilterSimilarAction('all'),
            FileOrderAction(ext='.png'),
        )

    with TemporaryDirectory() as src_dir:
        logging.info('Extract figures from videos ...')
        source.export(SaveExporter(src_dir, no_meta=True))

        with TemporaryDirectory() as clu_dir:
            logging.info(f'Clustering from {src_dir!r} to {clu_dir!r} ...')
            ids = cluster_from_directory(src_dir, clu_dir, merge_threshold)

            with TemporaryDirectory() as dst_dir:
                create_project_by_result(bangumi_name, ids, clu_dir, dst_dir, preview_count)

                yield dst_dir


def extract_to_huggingface(video_or_directory: str, bangumi_name: str,
                           repository: str, revision: str = 'main', no_extract: bool = False,
                           min_size: int = 320, merge_threshold: float = 0.85, preview_count: int = 8):
    logging.info(f'Initializing repository {repository!r} ...')
    hf_client = get_hf_client()
    hf_fs = get_hf_fs()
    if not hf_fs.exists(f'datasets/{repository}/.gitattributes'):
        hf_client.create_repo(repo_id=repository, repo_type='dataset', exist_ok=True)

    _exist_files = [os.path.relpath(file, repository) for file in hf_fs.glob(f'{repository}/**')]
    _exist_ps = sorted([(file, file.split('/')) for file in _exist_files], key=lambda x: x[1])
    pre_exist_files = set()
    for i, (file, segments) in enumerate(_exist_ps):
        if i < len(_exist_ps) - 1 and segments == _exist_ps[i + 1][1][:len(segments)]:
            continue
        if file != '.':
            pre_exist_files.add(file)

    with extract_from_videos(video_or_directory, bangumi_name, no_extract,
                             min_size, merge_threshold, preview_count) as dst_dir:
        operations = []
        for directory, _, files in os.walk(dst_dir):
            for file in files:
                filename = os.path.abspath(os.path.join(dst_dir, directory, file))
                file_in_repo = os.path.relpath(filename, dst_dir)
                operations.append(CommitOperationAdd(
                    path_in_repo=file_in_repo,
                    path_or_fileobj=filename,
                ))
                if file_in_repo in pre_exist_files:
                    pre_exist_files.remove(file_in_repo)
        logging.info(f'Useless files: {sorted(pre_exist_files)} ...')
        for file in sorted(pre_exist_files):
            operations.append(CommitOperationDelete(path_in_repo=file))

        current_time = datetime.datetime.now().astimezone().strftime('%Y-%m-%d %H:%M:%S %Z')
        commit_message = f'Publish {bangumi_name}\'s data, on {current_time}'
        logging.info(f'Publishing {bangumi_name}\'s data to repository {repository!r} ...')
        hf_client.create_commit(
            repository,
            operations,
            commit_message=commit_message,
            repo_type='dataset',
            revision=revision,
        )