File size: 15,646 Bytes
69a6cef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
import glob
import io
import json
import logging
import os
import re
import textwrap
from typing import Union, Optional, List

import markdown2
import numpy as np
from PIL import Image
from hbutils.string import plural_word
from hbutils.system import TemporaryDirectory
from imgutils.data import load_image
from imgutils.detect import detect_faces
from imgutils.metrics import ccip_extract_feature, ccip_batch_differences, ccip_default_threshold
from imgutils.validate import anime_rating_score
from pycivitai import civitai_find_online
from pycivitai.client import find_version_id_by_hash
from tqdm.auto import tqdm
from waifuc.source import LocalSource

from .export import draw_with_repo
from ..dataset import load_dataset_for_character
from ..publish.civitai import _tag_decode, try_find_title, try_get_title_from_repo
from ..utils import srequest, get_hf_fs, load_tags_from_directory


def publish_samples_to_civitai(images_dir, model: Union[int, str], model_version: Optional[str] = None,
                               model_creator='narugo1992', safe_only: bool = False,
                               extra_tags: Optional[List[str]] = None, post_title: str = None,
                               session_repo: str = 'narugo/civitai_session_p1'):
    resource = civitai_find_online(model, model_version, creator=model_creator)
    model_version_id = resource.version_id
    post_title = post_title or f"{resource.model_name} - {resource.version_name} Review"

    images = []
    for img_file in glob.glob(os.path.join(images_dir, '*.png')):
        img_filename = os.path.basename(img_file)
        img_name = os.path.splitext(img_filename)[0]
        img_info_filename = f'{img_name}_info.txt'

        local_img_file = os.path.join(images_dir, img_filename)
        local_info_file = os.path.join(images_dir, img_info_filename)

        info = {}
        with open(local_info_file, 'r', encoding='utf-8') as iif:
            for line in iif:
                line = line.strip()
                if line:
                    info_name, info_text = line.split(':', maxsplit=1)
                    info[info_name.strip()] = info_text.strip()

        meta = {
            'cfgScale': int(round(float(info.get('Guidance Scale')))),
            'negativePrompt': info.get('Neg Prompt'),
            'prompt': info.get('Prompt'),
            'sampler': info.get('Sample Method', "Euler a"),
            'seed': int(info.get('Seed')),
            'steps': int(info.get('Infer Steps')),
            'Size': f"{info['Width']}x{info['Height']}",
        }
        if info.get('Clip Skip'):
            meta['clipSkip'] = int(info['Clip Skip'])
        if info.get('Model'):
            meta['Model'] = info['Model']
            pil_img_file = Image.open(local_img_file)
            if pil_img_file.info.get('parameters'):
                png_info_text = pil_img_file.info['parameters']
                find_hash = re.findall(r'Model hash:\s*([a-zA-Z\d]+)', png_info_text, re.IGNORECASE)
                if find_hash:
                    model_hash = find_hash[0].lower()
                    meta['hashes'] = {"model": model_hash}
                    meta["resources"] = [
                        {
                            "hash": model_hash,
                            "name": info['Model'],
                            "type": "model"
                        }
                    ]
                    meta["Model hash"] = model_hash

        nsfw = (info.get('Safe For Word', info.get('Safe For Work')) or '').lower() != 'yes'

        rating_score = anime_rating_score(local_img_file)
        safe_v = int(round(rating_score['safe'] * 10))
        safe_r15 = int(round(rating_score['r15'] * 10))
        safe_r18 = int(round(rating_score['r18'] * 10))
        faces = detect_faces(local_img_file)
        if faces:
            (x0, y0, x1, y1), _, _ = faces[0]
            width, height = load_image(local_img_file).size
            face_area = abs((x1 - x0) * (y1 - y0))
            face_ratio = face_area * 1.0 / (width * height)
            face_ratio = int(round(face_ratio * 50))
        else:
            continue

        images.append((
            (-safe_v, -safe_r15, -safe_r18) if safe_only else (0,),
            -face_ratio,
            1 if nsfw else 0,
            0 if img_name.startswith('pattern_') else 1,
            img_name,
            (local_img_file, img_filename, meta)
        ))

    images = [item[-1] for item in sorted(images)]

    from ..publish.civitai import civitai_upload_images, get_civitai_session, parse_publish_at

    def _custom_pc_func(mvid):
        return {
            "json": {
                "modelVersionId": mvid,
                "title": post_title,
                "tag": None,
                "authed": True,
            },
            "meta": {
                "values": {
                    "tag": ["undefined"]
                }
            }
        }

    session = get_civitai_session(session_repo)
    post_id = civitai_upload_images(
        model_version_id, images,
        tags=[*resource.tags, *extra_tags],
        model_id=resource.model_id,
        pc_func=_custom_pc_func,
        session=session,
    )

    logging.info(f'Publishing post {post_id!r} ...')
    resp = srequest(
        session, 'POST', 'https://civitai.com/api/trpc/post.update',
        json={
            "json": {
                "id": post_id,
                "publishedAt": parse_publish_at('now'),
                "authed": True,
            },
            "meta": {
                "values": {
                    "publishedAt": ["Date"]
                }
            }
        },
        headers={'Referer': f'https://civitai.com/models/{resource.model_id}/wizard?step=4'},
    )
    resp.raise_for_status()

    return images


def civitai_review(model: Union[int, str], model_version: Optional[str] = None,
                   model_creator='narugo1992', rating: int = 5, description_md: Optional[str] = None,
                   session_repo: str = 'narugo/civitai_session_p1'):
    resource = civitai_find_online(model, model_version, creator=model_creator)

    from ..publish.civitai import get_civitai_session
    session = get_civitai_session(session_repo)

    logging.info(f'Try find exist review of model version #{resource.version_id} ...')
    _err = None
    try:  # Add this shit for the 500 of this API (2023-09-14)
        resp = srequest(
            session, 'GET', 'https://civitai.com/api/trpc/resourceReview.getUserResourceReview',
            params={'input': json.dumps({"json": {"modelVersionId": resource.version_id, "authed": True}})},
            headers={
                'Referer': f'https://civitai.com/posts/create?modelId={resource.model_id}&'
                           f'modelVersionId={resource.version_id}&'
                           f'returnUrl=/models/{resource.model_id}?'
                           f'modelVersionId={resource.version_id}reviewing=true'
            },
            raise_for_status=False
        )
    except AssertionError:
        _err = True
        resp = None

    if _err or resp.status_code == 404:
        logging.info(f'Creating review for #{resource.version_id} ...')
        resp = srequest(
            session, 'POST', 'https://civitai.com/api/trpc/resourceReview.create',
            json={
                "json": {
                    "modelVersionId": resource.version_id,
                    "modelId": resource.model_id,
                    "rating": rating,
                    "authed": True,
                }
            },
            headers={'Referer': f'https://civitai.com/models/{resource.model_id}/wizard?step=4'}
        )
        resp.raise_for_status()
    else:
        if resp is not None:
            resp.raise_for_status()
    review_id = resp.json()['result']['data']['json']['id']

    logging.info(f'Updating review #{review_id}\'s rating ...')
    resp = srequest(
        session, 'POST', 'https://civitai.com/api/trpc/resourceReview.update',
        json={
            "json": {
                "id": review_id,
                "rating": rating,
                "details": None,
                "authed": True,
            },
            "meta": {"values": {"details": ["undefined"]}}
        },
        headers={'Referer': f'https://civitai.com/models/{resource.model_id}/wizard?step=4'}
    )
    resp.raise_for_status()

    if description_md:
        logging.info(f'Updating review #{review_id}\'s description ...')
        resp = srequest(
            session, 'POST', 'https://civitai.com/api/trpc/resourceReview.update',
            json={
                "json": {
                    "id": review_id,
                    "details": markdown2.markdown(textwrap.dedent(description_md)),
                    'rating': None,
                    "authed": True,
                },
                "meta": {"values": {"rating": ["undefined"]}}
            },
            headers={'Referer': f'https://civitai.com/models/{resource.model_id}/wizard?step=4'}
        )
        resp.raise_for_status()


_BASE_MODEL_LIST = [
    'AIARTCHAN/anidosmixV2',
    # 'stablediffusionapi/anything-v5',
    # 'Lykon/DreamShaper',
    'Meina/Unreal_V4.1',
    'digiplay/majicMIX_realistic_v6',
    'jzli/XXMix_9realistic-v4',
    'stablediffusionapi/abyssorangemix2nsfw',
    'AIARTCHAN/expmixLine_v2',
    # 'Yntec/CuteYuki2',
    'stablediffusionapi/counterfeit-v30',
    'stablediffusionapi/flat-2d-animerge',
    'redstonehero/cetusmix_v4',
    # 'KBlueLeaf/kohaku-v4-rev1.2',
    # 'stablediffusionapi/night-sky-yozora-sty',
    'Meina/MeinaHentai_V4',
    # 'Meina/MeinaPastel_V6',
]


def civitai_auto_review(repository: str, model: Optional[Union[int, str]] = None,
                        model_version: Optional[str] = None,
                        model_creator='narugo1992', step: Optional[int] = None,
                        base_models: Optional[List[str]] = None,
                        rating: Optional[int] = 5, description_md: Optional[str] = None,
                        session_repo: str = 'narugo/civitai_session_p1'):
    game_name = repository.split('/')[-1].split('_')[-1]
    char_name = ' '.join(repository.split('/')[-1].split('_')[:-1])
    model = model or try_find_title(char_name, game_name) or \
            try_get_title_from_repo(repository) or repository.split('/')[-1]
    logging.info(f'Model name on civitai: {model!r}')

    from ..publish.export import KNOWN_MODEL_HASHES

    hf_fs = get_hf_fs()
    model_info = json.loads(hf_fs.read_text(f'{repository}/meta.json'))
    dataset_info = model_info['dataset']

    # load dataset
    ds_size = (384, 512) if not dataset_info or not dataset_info['type'] else dataset_info['type']
    with load_dataset_for_character(repository, size=ds_size) as (_, ds_dir):
        core_tags, _ = load_tags_from_directory(ds_dir)

        all_tags = [
            game_name, f"{game_name} {char_name}", char_name,
            'female', 'girl', 'character', 'fully-automated', 'random prompt', 'random seed',
            *map(_tag_decode, core_tags.keys()),
        ]
        ds_source = LocalSource(ds_dir)
        ds_feats = []
        for item in tqdm(list(ds_source), desc='Extract Dataset Feature'):
            ds_feats.append(ccip_extract_feature(item.image))

        all_feats = []
        model_results = []
        for base_model in (base_models or _BASE_MODEL_LIST):
            logging.info(f'Reviewing with {base_model!r} ...')
            with TemporaryDirectory() as td:
                if KNOWN_MODEL_HASHES.get(base_model):
                    bm_id, bm_version_id, _ = find_version_id_by_hash(KNOWN_MODEL_HASHES[base_model])
                    resource = civitai_find_online(bm_id, bm_version_id)
                    m_name = f'{resource.model_name} - {resource.version_name}'
                    m_url = f'https://civitai.com/models/{resource.model_id}?modelVersionId={resource.version_id}'
                else:
                    m_name = base_model
                    m_url = None

                draw_with_repo(repository, td, step=step, pretrained_model=base_model)
                images = publish_samples_to_civitai(
                    td, model, model_version,
                    model_creator=model_creator,
                    extra_tags=all_tags,
                    post_title=f"AI Review (Base Model: {m_name})",
                    session_repo=session_repo
                )

                images_count = len(images)
                gp_feats = []
                for local_imgfile, _, _ in tqdm(images, desc='Extract Images Feature'):
                    gp_feats.append(ccip_extract_feature(local_imgfile))
                all_feats.extend(gp_feats)

                gp_diffs = ccip_batch_differences([*gp_feats, *ds_feats])[:len(gp_feats), len(gp_feats):]
                gp_batch = gp_diffs <= ccip_default_threshold()
                scores = gp_batch.mean(axis=1)
                losses = gp_diffs.mean(axis=1)

                ret = {
                    'model_name': m_name,
                    'model_homepage': m_url,
                    'images': images_count,
                    'mean_score': scores.mean().item(),
                    'median_score': np.median(scores).item(),
                    'mean_loss': losses.mean().item(),
                    'median_loss': np.median(losses).item(),
                }
                logging.info(f'Result of model: {ret!r}')
                model_results.append(ret)

        all_diffs = ccip_batch_differences([*all_feats, *ds_feats])[:len(all_feats), len(all_feats):]
        all_batch = all_diffs <= ccip_default_threshold()
        all_scores = all_batch.mean(axis=1)
        all_losses = all_diffs.mean(axis=1)
        all_mean_score = all_scores.mean().item()
        all_median_score = np.median(all_scores).item()
        all_mean_loss = all_losses.mean().item()
        all_median_loss = np.median(all_losses).item()

        if rating is not None:
            logging.info('Making review ...')
            with io.StringIO() as ds:
                print('Tested on the following models:', file=ds)
                print('', file=ds)

                all_total_images = 0
                for mr in model_results:
                    if mr['model_homepage']:
                        mx = f'[{mr["model_name"]}]({mr["model_homepage"]})'
                    else:
                        mx = mr['model_name']

                    all_total_images += mr['images']
                    print(
                        f'When using model {mx}, {plural_word(mr["images"], "image")} in total, '
                        f'recognition score (mean/median): {mr["mean_score"]:.3f}/{mr["median_score"]:.3f}, '
                        f'character image loss (mean/median): {mr["mean_loss"]:.4f}/{mr["median_loss"]:.4f}.',
                        file=ds
                    )
                    print('', file=ds)

                print(
                    f'Overall, {plural_word(all_total_images, "image")} in total, '
                    f'recognition score (mean/median): {all_mean_score:.3f}/{all_median_score:.3f}, '
                    f'character image loss (mean/median): {all_mean_loss:.4f}/{all_median_loss:.4f}.',
                    file=ds
                )
                print('', file=ds)

                description_md = description_md or ds.getvalue()

            try:
                civitai_review(model, model_version, model_creator, rating, description_md, session_repo)
            except:
                print('This is the description md:')
                print(description_md)
                raise