Spaces:
Runtime error
Runtime error
File size: 9,243 Bytes
69a6cef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
import glob
import io
import json
import logging
import os
import shutil
from dataclasses import dataclass
from textwrap import dedent
from typing import List, Union, Optional
import yaml
from PIL.PngImagePlugin import PngInfo
from imgutils.detect import detect_censors
try:
from yaml import CLoader as Loader, CDumper as Dumper
except ImportError:
from yaml import Loader, Dumper
from PIL import Image
from hbutils.system import TemporaryDirectory
from hcpdiff import Visualizer
from hcpdiff.utils import load_config_with_cli
from ..utils import data_to_cli_args
_DEFAULT_INFER_CFG_FILE = 'cfgs/infer/text2img_anime_lora.yaml'
_DEFAULT_INFER_MODEL = 'LittleApple-fp16/SpiritForeseerMix'
def sample_method_to_config(method):
if method == 'DPM++ SDE Karras':
return {
'_target_': 'diffusers.DPMSolverSDEScheduler',
'beta_start': 0.00085,
'beta_end': 0.012,
'beta_schedule': 'scaled_linear',
'use_karras_sigmas': True,
}
elif method == 'DPM++ 2M Karras':
return {
'_target_': 'diffusers.DPMSolverMultistepScheduler',
'beta_start': 0.00085,
'beta_end': 0.012,
'algorithm_type': 'dpmsolver++',
'beta_schedule': 'scaled_linear',
'use_karras_sigmas': True
}
elif method == 'Euler a':
return {
'_target_': 'diffusers.EulerAncestralDiscreteScheduler',
'beta_start': 0.00085,
'beta_end': 0.012,
'beta_schedule': 'scaled_linear',
}
else:
raise ValueError(f'Unknown sample method - {method!r}.')
def draw_images(
workdir: str, prompts: Union[str, List[str]], neg_prompts: Union[str, List[str]] = None,
seeds: Union[int, List[str]] = None, emb_name: str = None, save_cfg: bool = True,
model_steps: int = 1000, n_repeats: int = 2, pretrained_model: str = _DEFAULT_INFER_MODEL,
width: int = 512, height: int = 768, gscale: float = 8, infer_steps: int = 30,
lora_alpha: float = 0.85, output_dir: str = 'output', cfg_file: str = _DEFAULT_INFER_CFG_FILE,
clip_skip: int = 2, sample_method: str = 'DPM++ 2M Karras',
):
emb_name = emb_name or os.path.basename(workdir)
with TemporaryDirectory() as emb_dir:
src_pt_files = glob.glob(os.path.join(workdir, 'ckpts', f'*-{model_steps}.pt'))
if not src_pt_files:
raise FileNotFoundError(f'Embedding not found for step {model_steps}.')
src_pt_file = src_pt_files[0]
shutil.copyfile(src_pt_file, os.path.join(emb_dir, f'{emb_name}.pt'))
cli_args = data_to_cli_args({
'pretrained_model': pretrained_model,
'N_repeats': n_repeats,
'vae_optimize': {
'tiling': False,
},
'clip_skip': clip_skip - 1,
'bs': 1,
'num': 1,
'infer_args': {
'width': width,
'height': height,
'guidance_scale': gscale,
'num_inference_steps': infer_steps,
},
'exp_dir': workdir,
'model_steps': model_steps,
'emb_dir': emb_dir,
'output_dir': output_dir,
'merge': {
'alpha': lora_alpha,
},
'new_components': {
'scheduler': sample_method_to_config(sample_method),
'vae': {
'_target_': 'diffusers.AutoencoderKL.from_pretrained',
'pretrained_model_name_or_path': 'deepghs/animefull-latest', # path to vae model
'subfolder': 'vae',
}
}
})
logging.info(f'Infer based on {cfg_file!r}, with {cli_args!r}')
cfgs = load_config_with_cli(cfg_file, args_list=cli_args) # skip --cfg
N = None
if isinstance(prompts, list):
N = len(prompts)
if isinstance(neg_prompts, list):
if N is not None and len(neg_prompts) != N:
raise ValueError(f'Number of prompts ({len(prompts)}) and neg_prompts ({len(neg_prompts)}) not match.')
N = len(neg_prompts)
if isinstance(seeds, list):
if N is not None and len(seeds) != N:
raise ValueError(f'Number of both prompts ({N}) and seed ({len(seeds)}) not match.')
N = len(seeds)
if N is None:
N = 1
if not isinstance(prompts, list):
prompts = [prompts] * N
if not isinstance(neg_prompts, list):
neg_prompts = [neg_prompts] * N
if not isinstance(seeds, list):
seeds = [seeds] * N
viser = Visualizer(cfgs)
viser.vis_to_dir(prompt=prompts, negative_prompt=neg_prompts, seeds=seeds,
save_cfg=save_cfg, **cfgs.infer_args)
@dataclass
class Drawing:
name: str
prompt: str
neg_prompt: str
seed: int
sfw: bool
width: int
height: int
gscale: float
steps: int
image: Image.Image
sample_method: str
clip_skip: int
model: str
model_hash: Optional[str] = None
@property
def preview_info(self):
return dedent(f"""
Prompt: {self.prompt}
Neg Prompt: {self.neg_prompt}
Width: {self.width}
Height: {self.height}
Guidance Scale: {self.gscale}
Sample Method: {self.sample_method}
Infer Steps: {self.steps}
Clip Skip: {self.clip_skip}
Seed: {self.seed}
Model: {self.model}
Safe For Work: {"yes" if self.sfw else "no"}
""").lstrip()
@property
def pnginfo_text(self) -> str:
with io.StringIO() as sf:
print(self.prompt, file=sf)
print(f'Negative prompt: {self.neg_prompt}', file=sf)
if self.model_hash:
print(f'Steps: {self.steps}, Sampler: {self.sample_method}, '
f'CFG scale: {self.gscale}, Seed: {self.seed}, Size: {self.width}x{self.height}, '
f'Model hash: {self.model_hash.lower()}, Model: {self.model}, '
f'Clip skip: {self.clip_skip}', file=sf)
else:
print(f'Steps: {self.steps}, Sampler: {self.sample_method}, '
f'CFG scale: {self.gscale}, Seed: {self.seed}, Size: {self.width}x{self.height}, '
f'Model: {self.model}, '
f'Clip skip: {self.clip_skip}', file=sf)
return sf.getvalue()
@property
def pnginfo(self) -> PngInfo:
info = PngInfo()
info.add_text('parameters', self.pnginfo_text)
return info
_N_MAX_DRAW = 20
def draw_with_workdir(
workdir: str, emb_name: str = None, save_cfg: bool = True,
model_steps: int = 1000, n_repeats: int = 2, pretrained_model: str = _DEFAULT_INFER_MODEL,
width: int = 512, height: int = 768, gscale: float = 8, infer_steps: int = 30,
lora_alpha: float = 0.85, output_dir: str = None, cfg_file: str = _DEFAULT_INFER_CFG_FILE,
clip_skip: int = 2, sample_method: str = 'DPM++ 2M Karras', model_hash: Optional[str] = None,
):
n_pnames, n_prompts, n_neg_prompts, n_seeds, n_sfws = [], [], [], [], []
for jfile in glob.glob(os.path.join(workdir, 'rtags', '*.json')):
with open(jfile, 'r', encoding='utf-8') as f:
data = json.load(f)
n_pnames.append(data['name'])
n_prompts.append(data['prompt'])
n_neg_prompts.append(data['neg_prompt'])
n_seeds.append(data['seed'])
n_sfws.append(data['sfw'])
n_total = len(n_pnames)
retval = []
for x in range(0, n_total, _N_MAX_DRAW):
pnames, prompts, neg_prompts, seeds, sfws = \
n_pnames[x:x + _N_MAX_DRAW], n_prompts[x:x + _N_MAX_DRAW], n_neg_prompts[x:x + _N_MAX_DRAW], \
n_seeds[x:x + _N_MAX_DRAW], n_sfws[x:x + _N_MAX_DRAW]
with TemporaryDirectory() as td:
_tmp_output_dir = output_dir or td
draw_images(
workdir, prompts, neg_prompts, seeds,
emb_name, save_cfg, model_steps, n_repeats, pretrained_model,
width, height, gscale, infer_steps, lora_alpha, _tmp_output_dir, cfg_file,
clip_skip, sample_method,
)
for i, (pname, prompt, neg_prompt, seed, sfw) in \
enumerate(zip(pnames, prompts, neg_prompts, seeds, sfws), start=1):
img_file = glob.glob(os.path.join(_tmp_output_dir, f'{i}-*.png'))[0]
yaml_file = glob.glob(os.path.join(_tmp_output_dir, f'{i}-*.yaml'))[0]
with open(yaml_file, 'r', encoding='utf-8') as f:
seed = yaml.load(f, Loader)['seed']
img = Image.open(img_file)
img.load()
retval.append(Drawing(
pname, prompt, neg_prompt, seed,
sfw=sfw and len(detect_censors(img, conf_threshold=0.45)) == 0,
width=width, height=height, gscale=gscale, steps=infer_steps,
image=img, sample_method=sample_method, clip_skip=clip_skip,
model=pretrained_model, model_hash=model_hash,
))
return retval
|