import datetime import glob import json import logging import os.path import random import re import shutil import zipfile from contextlib import contextmanager from textwrap import dedent from typing import Iterator import numpy as np import pandas as pd from hbutils.string import plural_word from hbutils.system import TemporaryDirectory from huggingface_hub import CommitOperationAdd, CommitOperationDelete from imgutils.data import load_image from imgutils.metrics import ccip_extract_feature, ccip_batch_differences, ccip_default_threshold from natsort import natsorted from sklearn.cluster import OPTICS from tqdm.auto import tqdm from waifuc.action import PaddingAlignAction, PersonSplitAction, FaceCountAction, MinSizeFilterAction, \ NoMonochromeAction, FilterSimilarAction, HeadCountAction, FileOrderAction, TaggingAction, RandomFilenameAction, \ BackgroundRemovalAction, ModeConvertAction, FileExtAction from waifuc.action.filter import MinAreaFilterAction from waifuc.export import SaveExporter, TextualInversionExporter from waifuc.model import ImageItem from waifuc.source import VideoSource, BaseDataSource, LocalSource, EmptySource from ...utils import number_to_tag, get_hf_client, get_hf_fs class ListFeatImageSource(BaseDataSource): def __init__(self, image_files, feats): self.image_files = image_files self.feats = feats def _iter(self) -> Iterator[ImageItem]: for file, feat in zip(self.image_files, self.feats): yield ImageItem(load_image(file), {'ccip_feature': feat, 'filename': os.path.basename(file)}) def cluster_from_directory(src_dir, dst_dir, merge_threshold: float = 0.85, clu_min_samples: int = 5, extract_from_noise: bool = True): image_files = np.array(natsorted(glob.glob(os.path.join(src_dir, '*.png')))) logging.info(f'Extracting feature of {plural_word(len(image_files), "images")} ...') images = [ccip_extract_feature(img) for img in tqdm(image_files, desc='Extract features')] batch_diff = ccip_batch_differences(images) batch_same = batch_diff <= ccip_default_threshold() # clustering def _metric(x, y): return batch_diff[int(x), int(y)].item() logging.info('Clustering ...') samples = np.arange(len(images)).reshape(-1, 1) # max_eps, _ = ccip_default_clustering_params(method='optics_best') clustering = OPTICS(min_samples=clu_min_samples, metric=_metric).fit(samples) labels = clustering.labels_ max_clu_id = labels.max().item() all_label_ids = np.array([-1, *range(0, max_clu_id + 1)]) logging.info(f'Cluster complete, with {plural_word(max_clu_id, "cluster")}.') label_cnt = {i: (labels == i).sum() for i in all_label_ids if (labels == i).sum() > 0} logging.info(f'Current label count: {label_cnt}') if extract_from_noise: mask_labels = labels.copy() for nid in tqdm(np.where(labels == -1)[0], desc='Matching for noises'): avg_dists = np.array([ batch_diff[nid][labels == i].mean() for i in range(0, max_clu_id + 1) ]) r_sames = np.array([ batch_same[nid][labels == i].mean() for i in range(0, max_clu_id + 1) ]) best_id = np.argmin(avg_dists) if r_sames[best_id] >= 0.90: mask_labels[nid] = best_id labels = mask_labels logging.info('Noise extracting complete.') label_cnt = {i: (labels == i).sum() for i in all_label_ids if (labels == i).sum() > 0} logging.info(f'Current label count: {label_cnt}') # trying to merge clusters _exist_ids = set(range(0, max_clu_id + 1)) while True: _round_merged = False for xi in range(0, max_clu_id + 1): if xi not in _exist_ids: continue for yi in range(xi + 1, max_clu_id + 1): if yi not in _exist_ids: continue score = (batch_same[labels == xi][:, labels == yi]).mean() logging.info(f'Label {xi} and {yi}\'s similarity score: {score}') if score >= merge_threshold: labels[labels == yi] = xi logging.info(f'Merging label {yi} into {xi} ...') _exist_ids.remove(yi) _round_merged = True if not _round_merged: break logging.info(f'Merge complete, remained cluster ids: {sorted(_exist_ids)}.') label_cnt = {i: (labels == i).sum() for i in all_label_ids if (labels == i).sum() > 0} logging.info(f'Current label count: {label_cnt}') ids = [] for i, clu_id in enumerate(tqdm(sorted(_exist_ids))): total = (labels == clu_id).sum() logging.info(f'Cluster {clu_id} will be renamed as #{i}, {plural_word(total, "image")} in total.') os.makedirs(os.path.join(dst_dir, str(i)), exist_ok=True) for imgfile in image_files[labels == clu_id]: shutil.copyfile(imgfile, os.path.join(dst_dir, str(i), os.path.basename(imgfile))) ids.append(i) n_total = (labels == -1).sum() if n_total > 0: logging.info(f'Save noise images, {plural_word(n_total, "image")} in total.') os.makedirs(os.path.join(dst_dir, str(-1)), exist_ok=True) for imgfile in image_files[labels == -1]: shutil.copyfile(imgfile, os.path.join(dst_dir, str(-1), os.path.basename(imgfile))) ids.append(-1) return ids def create_project_by_result(bangumi_name: str, ids, clu_dir, dst_dir, preview_count: int = 8, regsize: int = 1000): total_image_cnt = 0 columns = ['#', 'Images', 'Download', *(f'Preview {i}' for i in range(1, preview_count + 1))] rows = [] reg_source = EmptySource() for id_ in ids: logging.info(f'Packing for #{id_} ...') person_dir = os.path.join(dst_dir, str(id_)) new_reg_source = LocalSource(os.path.join(clu_dir, str(id_)), shuffle=True).attach( MinAreaFilterAction(400) ) reg_source = reg_source | new_reg_source os.makedirs(person_dir, exist_ok=True) with zipfile.ZipFile(os.path.join(person_dir, 'dataset.zip'), 'w') as zf: all_person_images = glob.glob(os.path.join(clu_dir, str(id_), '*.png')) total_image_cnt += len(all_person_images) for file in all_person_images: zf.write(file, os.path.basename(file)) for i, file in enumerate(random.sample(all_person_images, k=min(len(all_person_images), preview_count)), start=1): PaddingAlignAction((512, 704))(ImageItem(load_image(file))) \ .image.save(os.path.join(person_dir, f'preview_{i}.png')) rel_zip_path = os.path.relpath(os.path.join(person_dir, 'dataset.zip'), dst_dir) row = [id_ if id_ != -1 else 'noise', len(all_person_images), f'[Download]({rel_zip_path})'] for i in range(1, preview_count + 1): if os.path.exists(os.path.join(person_dir, f'preview_{i}.png')): relpath = os.path.relpath(os.path.join(person_dir, f'preview_{i}.png'), dst_dir) row.append(f'![preview {i}]({relpath})') else: row.append('N/A') rows.append(row) with TemporaryDirectory() as td: logging.info('Creating regular normal dataset ...') reg_source.attach( TaggingAction(force=False, character_threshold=1.01), RandomFilenameAction(), )[:regsize].export(TextualInversionExporter(td)) logging.info('Packing regular normal dataset ...') reg_zip = os.path.join(dst_dir, 'regular', 'normal.zip') os.makedirs(os.path.dirname(reg_zip), exist_ok=True) with zipfile.ZipFile(reg_zip, 'w') as zf: for file in glob.glob(os.path.join(td, '*')): zf.write(file, os.path.relpath(file, td)) with TemporaryDirectory() as td_nobg: logging.info('Creating regular no-background dataset ...') LocalSource(td).attach( BackgroundRemovalAction(), ModeConvertAction('RGB', 'white'), TaggingAction(force=True, character_threshold=1.01), FileExtAction('.png'), ).export(TextualInversionExporter(td_nobg)) logging.info('Packing regular no-background dataset ...') reg_nobg_zip = os.path.join(dst_dir, 'regular', 'nobg.zip') os.makedirs(os.path.dirname(reg_nobg_zip), exist_ok=True) with zipfile.ZipFile(reg_nobg_zip, 'w') as zf: for file in glob.glob(os.path.join(td_nobg, '*')): zf.write(file, os.path.relpath(file, td_nobg)) logging.info('Packing all images ...') all_zip = os.path.join(dst_dir, 'all.zip') with zipfile.ZipFile(all_zip, 'w') as zf: for file in glob.glob(os.path.join(clu_dir, '*', '*.png')): zf.write(file, os.path.relpath(file, clu_dir)) logging.info('Packing raw package ...') raw_zip = os.path.join(dst_dir, 'raw.zip') with zipfile.ZipFile(raw_zip, 'w') as zf: for file in glob.glob(os.path.join(clu_dir, '*', '*.png')): zf.write(file, os.path.basename(file)) with open(os.path.join(dst_dir, 'meta.json'), 'w', encoding='utf-8') as f: json.dump({ 'name': bangumi_name, 'ids': ids, 'total': total_image_cnt, }, f, indent=4, sort_keys=True, ensure_ascii=False) with open(os.path.join(dst_dir, 'README.md'), 'w', encoding='utf-8') as f: print(dedent(f""" --- license: mit tags: - art size_categories: - {number_to_tag(total_image_cnt)} --- """).strip(), file=f) print('', file=f) c_name = ' '.join(map(str.capitalize, re.split(r'\s+', bangumi_name))) print(f'# Bangumi Image Base of {c_name}', file=f) print('', file=f) print(f'This is the image base of bangumi {bangumi_name}, ' f'we detected {plural_word(len(ids), "character")}, ' f'{plural_word(total_image_cnt, "images")} in total. ' f'The full dataset is [here]({os.path.relpath(all_zip, dst_dir)}).', file=f) print('', file=f) print(f'**Please note that these image bases are not guaranteed to be 100% cleaned, ' f'they may be noisy actual.** If you intend to manually train models using this dataset, ' f'we recommend performing necessary preprocessing on the downloaded dataset to eliminate ' f'potential noisy samples (approximately 1% probability).', file=f) print('', file=f) print(f'Here is the characters\' preview:', file=f) print('', file=f) df = pd.DataFrame(columns=columns, data=rows) print(df.to_markdown(index=False), file=f) print('', file=f) @contextmanager def extract_from_videos(video_or_directory: str, bangumi_name: str, no_extract: bool = False, min_size: int = 320, merge_threshold: float = 0.85, preview_count: int = 8): if no_extract: source = LocalSource(video_or_directory) else: if os.path.isfile(video_or_directory): source = VideoSource(video_or_directory) elif os.path.isdir(video_or_directory): source = VideoSource.from_directory(video_or_directory) else: raise TypeError(f'Unknown video - {video_or_directory!r}.') source = source.attach( NoMonochromeAction(), PersonSplitAction(keep_original=False, level='n'), FaceCountAction(1, level='n'), HeadCountAction(1, level='n'), MinSizeFilterAction(min_size), FilterSimilarAction('all'), FileOrderAction(ext='.png'), ) with TemporaryDirectory() as src_dir: logging.info('Extract figures from videos ...') source.export(SaveExporter(src_dir, no_meta=True)) with TemporaryDirectory() as clu_dir: logging.info(f'Clustering from {src_dir!r} to {clu_dir!r} ...') ids = cluster_from_directory(src_dir, clu_dir, merge_threshold) with TemporaryDirectory() as dst_dir: create_project_by_result(bangumi_name, ids, clu_dir, dst_dir, preview_count) yield dst_dir def extract_to_huggingface(video_or_directory: str, bangumi_name: str, repository: str, revision: str = 'main', no_extract: bool = False, min_size: int = 320, merge_threshold: float = 0.85, preview_count: int = 8): logging.info(f'Initializing repository {repository!r} ...') hf_client = get_hf_client() hf_fs = get_hf_fs() if not hf_fs.exists(f'datasets/{repository}/.gitattributes'): hf_client.create_repo(repo_id=repository, repo_type='dataset', exist_ok=True) _exist_files = [os.path.relpath(file, repository) for file in hf_fs.glob(f'{repository}/**')] _exist_ps = sorted([(file, file.split('/')) for file in _exist_files], key=lambda x: x[1]) pre_exist_files = set() for i, (file, segments) in enumerate(_exist_ps): if i < len(_exist_ps) - 1 and segments == _exist_ps[i + 1][1][:len(segments)]: continue if file != '.': pre_exist_files.add(file) with extract_from_videos(video_or_directory, bangumi_name, no_extract, min_size, merge_threshold, preview_count) as dst_dir: operations = [] for directory, _, files in os.walk(dst_dir): for file in files: filename = os.path.abspath(os.path.join(dst_dir, directory, file)) file_in_repo = os.path.relpath(filename, dst_dir) operations.append(CommitOperationAdd( path_in_repo=file_in_repo, path_or_fileobj=filename, )) if file_in_repo in pre_exist_files: pre_exist_files.remove(file_in_repo) logging.info(f'Useless files: {sorted(pre_exist_files)} ...') for file in sorted(pre_exist_files): operations.append(CommitOperationDelete(path_in_repo=file)) current_time = datetime.datetime.now().astimezone().strftime('%Y-%m-%d %H:%M:%S %Z') commit_message = f'Publish {bangumi_name}\'s data, on {current_time}' logging.info(f'Publishing {bangumi_name}\'s data to repository {repository!r} ...') hf_client.create_commit( repository, operations, commit_message=commit_message, repo_type='dataset', revision=revision, )