mlnet-samples / di.py
XiaoYun Zhang
update
6abb254
raw
history blame
1.89 kB
from storage import LocalStorage, Storage
from setting import Settings
from embedding import AzureOpenAITextAda002, Embedding, OpenAITextAda002
from index import Index, QDrantVectorStore
from model.user import User
from qdrant_client import QdrantClient
def initialize_di_for_test() -> tuple[Settings, Storage,Embedding,Index]:
SETTINGS = Settings(_env_file='./test/.env.test')
STORAGE = LocalStorage('./test/test_storage')
if SETTINGS.embedding_use_azure:
EMBEDDING = AzureOpenAITextAda002(
api_base=SETTINGS.embedding_azure_openai_api_base,
model_name=SETTINGS.embedding_azure_openai_model_name,
api_key=SETTINGS.embedding_azure_openai_api_key,
)
else:
EMBEDDING = OpenAITextAda002(SETTINGS.openai_api_key)
INDEX = QDrantVectorStore(
embedding=EMBEDDING,
client= QdrantClient(
url=SETTINGS.qdrant_url,
api_key=SETTINGS.qdrant_api_key,),
collection_name='test_collection',
)
INDEX.create_collection_if_not_exists()
return SETTINGS, STORAGE, EMBEDDING, INDEX
def initialize_di_for_app() -> tuple[Settings, Storage,Embedding,Index]:
SETTINGS = Settings(_env_file='.env')
STORAGE = LocalStorage('.local_storage')
if SETTINGS.embedding_use_azure:
EMBEDDING = AzureOpenAITextAda002(
api_base=SETTINGS.embedding_azure_openai_api_base,
model_name=SETTINGS.embedding_azure_openai_model_name,
api_key=SETTINGS.embedding_azure_openai_api_key,
)
else:
EMBEDDING = OpenAITextAda002(SETTINGS.openai_api_key)
INDEX = QDrantVectorStore(
embedding=EMBEDDING,
client= QdrantClient(
url=SETTINGS.qdrant_url,
api_key=SETTINGS.qdrant_api_key,),
collection_name='collection',
)
return SETTINGS, STORAGE, EMBEDDING, INDEX