Spaces:
Sleeping
Sleeping
File size: 8,790 Bytes
c163b71 7504338 c163b71 7504338 c163b71 7504338 c163b71 7504338 c163b71 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
!pip install -q gradio
import warnings
warnings.filterwarnings('ignore')
# Import necessary libraries
import gradio as gr
import torch
from transformers import (
BertTokenizerFast,
BertForQuestionAnswering,
AutoTokenizer,
BartForQuestionAnswering,
DistilBertTokenizerFast,
DistilBertForQuestionAnswering
)
import gc
# Create a context store
context_store = []
selected_model = None # To track the selected model
# Define models and tokenizers
def load_bert_model_and_tokenizer():
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_save_path = "LivisLiquoro/BERT_Model_Squad1.1"
model = BertForQuestionAnswering.from_pretrained(model_save_path)
tokenizer = BertTokenizerFast.from_pretrained(model_save_path)
model.eval().to(device)
gc.collect()
torch.cuda.empty_cache()
return tokenizer, model, device
def load_bart_model_and_tokenizer():
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = BartForQuestionAnswering.from_pretrained("valhalla/bart-large-finetuned-squadv1")
tokenizer = AutoTokenizer.from_pretrained("valhalla/bart-large-finetuned-squadv1")
model.eval().to(device)
gc.collect()
torch.cuda.empty_cache()
return tokenizer, model, device
def load_distilbert_model_and_tokenizer():
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_save_path = "LivisLiquoro/DistilBert_model_squad1.1"
model = DistilBertForQuestionAnswering.from_pretrained(model_save_path)
tokenizer = DistilBertTokenizerFast.from_pretrained(model_save_path)
model.eval().to(device)
gc.collect()
torch.cuda.empty_cache()
return tokenizer, model, device
def clean_answer(tokens):
"""
Clean the tokens by removing special tokens like [SEP], [CLS], and fixing token fragments.
"""
cleaned_tokens = []
for token in tokens:
if token in ['[SEP]', '[CLS]']:
continue # Skip special tokens
token = token.replace('##', '') # Remove '##' prefix
if token: # Only add non-empty tokens
cleaned_tokens.append(token)
return tokenizer.convert_tokens_to_string(cleaned_tokens).strip() or None
def generate_answer(context, question):
max_attempts = 50 # Set maximum attempts for generating answers
attempts = 0
best_answer = None
# Adjusting the context chunking method
max_length = 512
chunks = [context[i:i + max_length] for i in range(0, len(context), max_length)]
while attempts < max_attempts:
attempts += 1
for chunk in chunks:
inputs = tokenizer(chunk, question, return_tensors='pt', truncation=True, max_length=max_length).to(device)
with torch.no_grad():
outputs = model(**inputs)
answer_start = torch.argmax(outputs.start_logits)
answer_end = torch.argmax(outputs.end_logits) + 1
if answer_start < answer_end:
answer = clean_answer(tokenizer.convert_ids_to_tokens(inputs['input_ids'][0][answer_start:answer_end]))
# Validate answer and ensure it's direct
if answer and answer.lower() != "no valid answer found":
best_answer = answer.capitalize()
break # Exit the chunk loop if a valid answer is found
if best_answer: # If an answer is found, no need to keep trying
break
if best_answer: # If a valid answer was found, exit the attempts loop
break
if best_answer:
return best_answer
else:
return "❌ No valid answer found."
# Define the Gradio interface with light theme and organized layout
def chatbot_interface():
with gr.Blocks() as demo:
# Custom CSS for light theme and layout
gr.Markdown("""
<style>
body { background-color: #f9f9f9; }
.chatbot-container { background-color: #ffffff; border-radius: 10px; padding: 20px; color: #333; font-family: Arial, sans-serif; }
.gr-button { background-color: #4CAF50; color: white; border: none; border-radius: 5px; padding: 10px 20px; font-size: 14px; cursor: pointer; }
.gr-button:hover { background-color: #45a049; }
.gr-textbox { background-color: #ffffff; color: #333; border-radius: 5px; border: 1px solid #ddd; padding: 10px; }
.gr-chatbot { background-color: #e6e6e6; border-radius: 10px; padding: 15px; color: #333; }
.footer { text-align: right; font-size: 12px; color: #777; font-style: italic; }
.note { text-align: right; font-size: 10px; color: #777; font-style: italic; position: absolute; bottom: 10px; right: 10px; }
</style>
""")
# Header
gr.Markdown("<h1 style='text-align: center; color: #4CAF50;'>EDITH: Multi-Model Question Answering Platform</h1>")
gr.Markdown("<p style='text-align: center; color: #777;'>Switch between BERT, BART, and DistilBERT models and ask questions based on the context.</p>")
context_state = gr.State()
model_choice_state = gr.State(value="BERT") # Default model is BERT
with gr.Row():
with gr.Column(scale=11): # Left panel for chatbot and question input (45%)
chatbot = gr.Chatbot(label="Chatbot")
question_input = gr.Textbox(label="Ask a Question", placeholder="Enter your question here...", lines=1)
submit_btn = gr.Button("Submit Question")
with gr.Column(scale=9): # Right panel for setting context and instructions (55%)
context_input = gr.Textbox(label="Set Context", placeholder="Enter the context here...", lines=4)
set_context_btn = gr.Button("Set Context")
clear_context_btn = gr.Button("Clear Context")
# Model selection buttons
model_selection = gr.Radio(choices=["BERT", "BART", "DistilBERT"], label="Select Model", value="BERT")
status_message = gr.Markdown("")
gr.Markdown("<strong>Instructions:</strong><br>1. Set a context.<br>2. Select the model (BERT, BART, or DistilBERT).<br>3. Ask questions based on the context.<br><br><strong>Note:</strong> <span class='note'>The BART model is pre-trained from Hugging Face. Credits to Hugging Face and the person who fine-tuned this model ('valhalla/bart-large-finetuned-squadv1')</span>")
footer = gr.Markdown("<div class='footer'>Prepared by: Team EDITH</div>")
def set_context(context):
if not context.strip():
return gr.update(), "Please enter a valid context.", None
return gr.update(visible=False), "Context has been set. You can now ask questions.", context
def clear_context():
return gr.update(visible=True), "Context has been cleared. Please set a new context.", None
def handle_question(question, history, context, model_choice):
global tokenizer, model, device
if not context:
return history, "Please set the context before asking questions."
if not question.strip():
return history, "Please enter a valid question."
# Load the selected model and tokenizer
if model_choice == "BERT":
tokenizer, model, device = load_bert_model_and_tokenizer()
model_name = "BERT"
elif model_choice == "BART":
tokenizer, model, device = load_bart_model_and_tokenizer()
model_name = "BART"
elif model_choice == "DistilBERT":
tokenizer, model, device = load_distilbert_model_and_tokenizer()
model_name = "DistilBERT"
answer = generate_answer(context, question)
history = history + [[f"👤: {question}", f"🤖 ({model_name}): {answer}"]] # Show the selected model with the answer
return history, ""
set_context_btn.click(set_context, inputs=context_input, outputs=[context_input, status_message, context_state])
clear_context_btn.click(clear_context, inputs=None, outputs=[context_input, status_message, context_state])
submit_btn.click(handle_question, inputs=[question_input, chatbot, context_state, model_selection], outputs=[chatbot, question_input])
# Enable "Enter" key to trigger the "Submit" button
question_input.submit(handle_question, inputs=[question_input, chatbot, context_state, model_selection], outputs=[chatbot, question_input])
return demo
# Run the Gradio interface
interface = chatbot_interface()
interface.launch(share=True)
|