import gradio as gr from transformers import pipeline, AutoTokenizer import torch import spaces @spaces.GPU def load_model(model_name): return pipeline("text-generation", model=model_name, device="cuda", torch_dtype=torch.float16) @spaces.GPU def generate( model_name, user_input, temperature=0.4, top_p=0.95, top_k=50, max_new_tokens=256, ): pipe = load_model(model_name) # Set tokenize correctly. Otherwise ticking the box breaks it. prompt = f"<|im_start|>user\n{user_input}<|im_end|>\n" outputs = pipe(prompt, max_new_tokens=max_new_tokens, do_sample=True, temperature=temperature, top_k=top_k, top_p=top_p, repetition_penalty=1.10) return outputs[0]["generated_text"] model_choices = ["Locutusque/UltraQwen-7B", "Locutusque/UltraQwen-1_8B", "Locutusque/TinyMistral-248M-v2.5-Instruct", "M4-ai/TinyMistral-6x248M-Instruct"] # What at the best options? g = gr.Interface( fn=generate, inputs=[ gr.components.Dropdown(choices=model_choices, label="Model", value=model_choices[0], interactive=True), gr.components.Textbox(lines=2, label="Prompt", value="How many planets are in our solar system?"), gr.components.Slider(minimum=0, maximum=1, value=0.4, label="Temperature"), gr.components.Slider(minimum=0, maximum=1, value=0.95, label="Top p"), gr.components.Slider(minimum=0, maximum=100, step=1, value=50, label="Top k"), gr.components.Slider(minimum=1, maximum=1024, step=1, value=256, label="Max tokens"), ], outputs=[gr.Textbox(lines=10, label="Output")], title="Hugging Face Transformers Model", description="A simple interface for generating text with a Hugging Face Transformers model.", concurrency_limit=1 ) g.launch(max_threads=2)