import gradio as gr from transformers import pipeline import torch import subprocess import spaces import os # Install flash-attn subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) # Initialize the model pipeline generator = pipeline('text-generation', model='Locutusque/NeuralHyperion-2.0-Mistral-7B', torch_dtype=torch.bfloat16, token=os.environ["HF"]) @spaces.GPU def generate_text(prompt, temperature, top_p, top_k, repetition_penalty, max_length): # Generate text using the model generator.model.cuda() generator.device = torch.device("cuda") prompt = f"<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant\n" outputs = generator( prompt, do_sample=True, max_new_tokens=max_length, temperature=temperature, top_p=top_p, top_k=top_k, repetition_penalty=repetition_penalty, return_full_text=False ) # Extract the generated text and return it generated_text = outputs[0]['generated_text'] generator.model.cpu() generator.device = torch.device("cpu") return generated_text # Create the Gradio interface iface = gr.Interface( fn=generate_text, inputs=[ gr.Textbox(label="Prompt", lines=2, placeholder="Type a prompt..."), gr.Slider(minimum=0.1, maximum=2.0, step=0.01, value=0.7, label="Temperature"), gr.Slider(minimum=0.0, maximum=1.0, step=0.01, value=0.95, label="Top p"), gr.Slider(minimum=0, maximum=100, step=1, value=40, label="Top k"), gr.Slider(minimum=1.0, maximum=2.0, step=0.01, value=1.10, label="Repetition Penalty"), gr.Slider(minimum=5, maximum=4096, step=5, value=1024, label="Max Length") ], outputs=gr.Textbox(label="Generated Text"), title="Hyperion-2.0-Mistral-7B", description="Try out the Hyperion-2.0-Mistral-7B model for free! This is a preview version, and the model will be released soon" ) iface.launch()